UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:
THREE (3) HOURS

INSTRUCTIONS:

There are seven (7) questions. Each question carries 25 marks. You are required to answer any four (4) Questions.
NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 (25 MARKS)

(a) Briefly explain the relationship between the Heisenberg uncertainty principle and the commutation of operators.
(b) Given that $\hat{A}=\frac{d}{d x}$ and $\hat{B}=\mathrm{x}^{2}$ find the commutator $[\hat{\mathrm{A}}, \hat{B}]$.
(c) A particle is in a state described by the function $\psi(x)=0.632 e^{2 i x}+$ $0.775 e^{-2 i x}$. What is the probability that the particle will be found with momentum $2 \hbar$?
[4]
(d) Consider the function $\mathrm{f}(\mathrm{x})=\mathrm{x} e^{-x^{2} / 2} \quad-\infty \leq x \leq \infty$
(i) Normalize $f(x)$
(ii) Find the average value of x

QUESTION 2 (25 MARKS)

a) Consider a particle of mass m confined in a cubic box of edge L. The potential energy inside the box is zero and infinity outside the box.
(i) Write the Hamiltonian for the particle inside the box
(ii) Write the Schrodinger equation for this system
(iii) Without doing any calculations, use the solutions of the particle in a one dimensional box (given below) to write the solutions for the above Schrodinger equation and the expression for energy of the system. [4]
(iv) What is the degeneracy of the energy level $\frac{18 h^{2}}{8 m L^{2}}$?
[4]
NB: For a particle in a one dimensional box of length L,

$$
\psi(x)=\left(\frac{2}{L}\right)^{\frac{1}{2}} \sin \left(\frac{n \pi x}{L}\right) \text { where } \mathrm{n}=1,2,3, \ldots \text { and } E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

b) The harmonic oscillator may be used for a model for molecular vibrations, considering the masses connected by spring-like bonds. The molecule vibrates like a harmonic oscillator with mass equal to the reduced mass of the atoms of the molecule.
(i) Calculate the reduced mass of an HBr molecule (atomic masses are 1.0078 u and 79.90 u for H and Br , respectively.
(ii) The vibrational frequency of the HBr molecule is $\mathrm{v}=7.944 \times 10^{13} \mathrm{~s}^{-1}$. Find the bond force constant k_{f}.
c) Find the most probable value(s) of x for a harmonic oscillator in its ground state, $\psi_{0}=N e^{-a x^{2}}, a$ is a constant.
d) The wavefunction of a particle rotating on a ring is given by $\psi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{-i m_{l} \phi}, m_{l}=0, \pm 1, \pm 2, \ldots$. Calculate the expectation value of ϕ.

OUESTION 3 (25 MARKS)

Lithium and chlorine both have two naturally occurring isotopes whose abundance and atomic masses are given below:

Isotope	Abundance $/ \%$	Atomic mass $/ \mathrm{u}$
${ }^{6} \mathrm{Li}$	8	6.0151
${ }^{7} \mathrm{Li}$	92	7.0160
${ }^{35} \mathrm{Cl}$	75	34.9688
${ }^{37} \mathrm{Cl}$	25	36.9651

Naturally occurring LiCl consists of a mixture of four possible isotopic combinations. A sample of natural LiCl was vaporized at 1500 K and a microwave spectrum obtained. The lowest frequency line was found at $1.24710 \mathrm{~cm}^{-1}$.
a) Why is the spectrum taken in the gas phase?
b) To which isotopic combination, does the lowest frequency line correspond?
c) Calculate the LiCl bond distance in this compound.
[6]
d) Assuming the bond distance is independent of isotopic substitution and rotational state, calculate the frequencies of the next three lines seen in the spectrum. To which isotope does each line correspond?
e) Which of these four lines (i.e. the $1.24710 \mathrm{~cm}^{-1}$ and the three in (d) above should be most intense? The least intense? Explain.

QUESTION 4 (25 MARKS)

a) Describe the fundamental vibrational modes of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}. For each molecule indicate which modes will show infrared activity and why.
b) Explain the difference between a "hot band" and an "overtone band" in infrared spectra. How would you distinguish the two experimentally?
[5]
c) The anharmonicity constant for ${ }^{35} \mathrm{CI}^{19} \mathrm{~F}$ is 1.25×10^{-2} and the fundamental frequency is $793.3 \mathrm{~cm}^{-1}$. The isotopic masses for ${ }^{35} \mathrm{Cl}$ and ${ }^{19} \mathrm{~F}$ are 34.9688 u and 18.9984 u , respectively.
(i) Calculate the energies of the first four vibrational levels.
(ii) Calculate the difference in energy between the $v=25$ and $v=26$ levels using (1) the harmonic oscillator model and (2) the anharmonic oscillator model. Comment on the difference of your results from the two calculations. [4]
(iii) Calculate the bond force constant in this molecule. [4]

QUESTION 5 (25 MARKS)

a) The energy levels of a hydrogenic atom are given by the following equation:
$\mathrm{E}_{\mathrm{n}}=-\frac{R_{H} h c Z^{2}}{n^{2}}$, where R_{H} is the Rydberg constant, Z is the nuclear charge and $\mathrm{n}=$ $1,2,3, \ldots$.
(i) Calculate the wavelength of a photon emitted when an electron goes from $\mathrm{n}=$ 3 to $\mathrm{n}=2$ in the hydrogenic atom He^{+}
(ii) What is the wavenumber of the first line in the Lyman series of He^{+}? (For Lyman series, $n_{2} \rightarrow n_{1}$, with $n_{1}=1, n_{2}=2,3 \ldots$)
b) The wave function for a 2 s orbital of a hydrogen atom is

$$
\begin{equation*}
\psi_{2 s}=N\left(2-r / a_{0}\right) e^{-\frac{r}{2 a_{0}}} \text {. Determine the normalization constant } N . \tag{6}
\end{equation*}
$$

c) State whether the following transitions are allowed or forbidden in a hydrogen atom. In each case, give a reason for your answer.
(i) $3 \mathrm{~d} \rightarrow 2 \mathrm{~s}$
(ii) $3 p \rightarrow 1 s$
[4]
d) What is the lowest term symbol for Ti^{3+} if the first two electrons to be lost are the 4 s electrons.
e) Calculate the magnitude of the orbital angular momentum of a 4d electron in a hydrogenic atom

QUESTION 6 (25 MARKS)

(a) Use the molecular orbital theory to explain why the binding energy of $\mathrm{N}_{2}{ }^{+}$is less than that of N_{2} whilst that of $\mathrm{O}_{2}{ }^{+}$is greater than that of O_{2}.
[6]
(b) Give the valence bond description of the bonding in ammonia, NH_{3}.
[4]
(c) Use the molecular orbital theory to assign the following bond lengths and binding energies to the following species:

Species: $\mathrm{H}_{2}{ }^{+}, \mathrm{H}_{2}, \mathrm{He}_{2}{ }^{+}, \mathrm{He}_{2}$
Bond lengths (pm): 74, 106, 108, and 6000
Binding energy ($\mathrm{kJ} / \mathrm{mol}$) :<<1, 241, 268, 457.
[6]
(d) Consider the ions NO^{-}and $\mathrm{C}_{2}{ }^{+}$
(i) Draw the molecular orbital energy diagram for each of the species
(ii) Write down the electron configuration and give multiplicity of the ground states.
(iii) Which ion should have the longer bond length?

QUESTION 7 (25 MARKS)

a) Describe the principles of laser action. Illustrate with an actual example.
b) What features of laser radiation are applied in Chemistry? Discuss two applications of lasers in Chemistry.
c) Photoionization of H_{2} by 21 eV electrons produces $\mathrm{H}_{2}{ }^{+}$. Explain why the intensity of the $v=2 \leftarrow 0$ transition is tronger than that of the $0 \leftarrow 0$ transition.

Total marks

Useful Integrals

1. $\int x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
2. $\int x^{3} e^{-x^{2}} d x=0$
3. $\int_{0} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
4. $\int \sin \theta d \theta=-\cos \theta+$ constant
5. $d \tau=r^{2} \sin \theta d r d \theta d \phi$
6. $\int x^{n} d x=\frac{1}{a^{n+1}} \quad n \neq-1$
7. $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3}$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	.e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ $6.2364 \times 10 \mathrm{~L} \mathrm{Torr}^{-1} \mathrm{~mol}^{-1}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=h / 2 \pi$	$1.05457 \times 10^{-24} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{Na}_{\text {a }}$	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.660 .54 \mathrm{X} 10^{-17} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mp_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{7} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{8}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \pi / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{B}_{0}=4 \pi \varepsilon_{0} h / m_{c} e^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{c}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=4.184$ joules (J)	1 erg
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$
$1 \mathrm{eV} /$ moleciule	$=1 \times 10^{-7} \mathrm{~J}$
$=$	$96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$

 femto pico. nano micro milli centi deci kilo mega giga $\begin{array}{llllllllll}10^{-15} & 10^{-12} & 10^{-8} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

PERIODIC TABLE OF ELEMENTS

*Lanthanide Scrics
** Actinide Scries

140.12	140.9	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Cu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Cs	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

