SUPPLEMENTARY EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:
THREE (3) HOURS

INSTRUCTIONS:

There are six (6) questions. Each question carries 25 marks. You are required to answer any four (4) questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

QUESTION 1 (25 MARKS)

a) Explain how Einstein's introduction of quantization of energy accounted for the properties of heat capacity at low temperatures
b) In an x-ray photoelectron experiment, a photon of wavelength 121 pm ejects an electron and it emerges with speed of $5.69 \times 10^{7} \mathrm{~m} / \mathrm{s}$. calculate the binding energy of the electron.
c) For the following operator and function, show that the function is an eigenfunction of the operator and determine the eigenvalue.

Operator	Eigenfunction
$\frac{d^{2}}{d x^{2}}-4$	$3 \cos 2 x$

d) What is the de Broglie wavelength of an electron accelerated to 100 eV
e) A photon of radiation with a wavelength of 305 nm ejects an electron from a metal with a kinetic energy of 1.77 eV . Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
f) By evaluating the commutator, $\left[\mathrm{x}, \mathrm{P}_{\mathrm{x}}\right.$], show whether the operators for position and momentum commute.
g) Two (unormalised) excited state wavefunctions of the hydrogen atom are
A) $\psi(r)=\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$
B) $\quad \psi(r, \theta, \phi)=r \sin \theta \cos \phi e^{-r / 2 a_{0}}$

Show that these two functions are mutually orthogonal.

QUESTION 2 (25 MARKS)

a) A particle is in a state described by the function $\psi(x)=0.632 e^{2 i x}+0.775 e^{-2 i x}$. What is the probability that the particle will be found with momentum $2 \hbar$
b) Consider the energy eigenvalues of a particle in a one dimensional box $E_{n}=\frac{h^{2} n^{2}}{8 m L^{2}}, \quad n=1,2,3, \ldots$ as a function of n, m and L.
(i) By what factor do you need to change the box length L to decrease the zero point energy by a factor of 400 for a fixed value of m ?
(ii) By what factor would you have to change \boldsymbol{n} for fixed values of L and m to increase the energy by a factor of 400 ?
(iii) By what factor would you have to increase L to have the zero point energy of an electron be equal to the zero point energy of a proton?
c) The function $\psi(x)=x\left(1-\frac{x}{L}\right)$, is an acceptable function for a particle in a one dimensional box of length L and with infinitely high walls.
(i) Normalize $\Psi(\mathbf{x})$
(ii) Calculate the expectation value $<x>$

QUESTION 3 (25 MARKS)

a) The total energy eigenvalues of the hydrogen atom are given by $\mathrm{E}_{\mathrm{n}}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}, \mathrm{n}=1,2,3, \ldots$ and the three quantrum numbers associated with the total energy eigenvalues are related by $n=1,2,3, \ldots ; I=0,1,2, \ldots n-1$; and m_{l} $=0, \pm 1, \pm 2, \pm 3, \ldots, \pm 1$. Using the notation $\psi_{n l m_{l}}$, list all eigenfunctions that have the following energy eigenvalues and hence give the degeneracy of these energy levels:
(i) $\mathrm{E}=-\frac{e^{2}}{32 \pi \varepsilon_{0} a_{0}}$
(ii) $\mathrm{E}=-\frac{e^{2}}{72 \pi \varepsilon_{0} a_{0}}$
b) Calculate the mean value of the radius, $\langle r>$, at which you would find an electron if the H atom wave function is $\psi_{210}(r, \theta, \phi)=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \cos \theta$
c) Define the quantum numbers L and S as applied to many electron atoms, indicating the kind of values they may have. State the physical meaning of the two quantum numbers in quantitative terms. Under what conditions are L and S no longer valid as quantum numbers? State then reason in a sentence or two.
d) Derive the term symbols for the electron configuration $n s^{1} n d^{1}$. Which of these terms has the lowest energy?

QUESTION 4 (25 MARKS)

a) The ionization energies (I) of an electron from the valence orbitals on a carbon and an oxygen atoms are given in the table below:

Atom	Valence orbital	l/MJ mol^{-1}
O	2 s	3.116
	2 p	1.524
C	2 s	1.872
	2 p	1.023

(i) Use these data to construct a molecular orbital energy diagram for CO.[5]
(ii) What is the electron configuration of the ground state of CO ? [1]
(iii) What is the bond order of CO ? [1]
(iv) Is CO paramagnetic or diamagnetic?
b) The highest occupied molecular orbitals for an excited electronic configuration of an oxygen molecule are $\left(1 \pi_{g}\right)^{1}\left(2 \sigma_{u}^{*}\right)^{1}$. Determine the molecular term symbols for oxygen in this electronic configuration.
c) The photoelectron spectrum of NO was obtained using He $58.4 \mathrm{~nm}(21.22 \mathrm{eV})$ radiation. It consisted of a strong peak at kinetic energy 4.69 eV and a series of 24 lines starting at 5.56 eV and ending at 2.2 eV . A shorter series of six lines began at 12.0 eV and ended at 10.7 eV . Account for this spectrum.
d) When light of wavelength 440 nm passes through a 3.5 rrm of solution of an absorbing substance with a concentration of $0.667 \mathrm{mmol} / \mathrm{L}$, the transmittance is 65.5 \%.Calculate the molar absorption coefficient of the solute at this wavelength and express the answer in $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$.

QUESTION 5 (25 MARKS)

a) Determine the number of translational, rotational and vibrational degrees of freedom in the following molecules:
(i) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii) OCS
(iii) $\mathrm{C}_{6} \mathrm{H}_{6}$
(iv) $\mathrm{H}_{2} \mathrm{CO}$
[6]
b) Classify each of the following molecules as spherical , a symmetric or an asymmetric top:
(i) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii) CCl_{4}
(iii) SO_{2}
(iv) SF_{6}
c) The rotational constant of ${ }^{2} D^{19} \mathrm{~F}$ determined from microwave spectroscopy is 11.007 cm^{-1}. The atomic masses of ${ }^{19} \mathrm{~F}$ and ${ }^{2} \mathrm{D}$ are 18.9984032 u and 2.0141018 u , respectively. Calculate the bond length in ${ }^{2} D^{19} \mathrm{~F}$ to the maximum number of significant figures consistent with this information.
d) The pure rotational Raman spectrum of ${ }^{14} \mathrm{~N}_{2}$ shows a spacing of $7.99 \mathrm{~cm}^{-1}$ between adjacent rotational lines.
(I) Calculate the value of the rotational constant B.
(II) What is the spacing between the unshifted line v_{ex} and the pure rotational line closest to V_{ex} ?
(III) If 540.8 nm radiation from an argon laser is used as the exciting radiation, find the wavelength of the two pure rotational Raman lines nearest to the unshifted lines.

QUESTION 6 (25 MARKS)

a) The force constant of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ is $240 \mathrm{Nm}^{-1}$ and the atomic mass of ${ }^{79} \mathrm{Br}$ is 78.9183 u . Calculate
(i) The fundamental vibration frequency $\overline{\mathcal{v}}$ and [3]
(ii) The zero point energy of ${ }^{79} \mathrm{Br}_{2}$ [3]
b) The fundamental line in the infrared spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ occurs at $2143.0 \mathrm{~cm}^{-1}$, and the first overtone occurs at $4260.0 \mathrm{~cm}^{-1}$. Calculate
(i) The fundamental vibrational frequency, \bar{v}, and the anharmonicity constant, χ_{e}
(ii) The exact zero point energy of CO .
c) Given that the fundamental vibrational frequency $\bar{v}=4138.32 \mathrm{~cm}^{-1}$ and the rotational constant $B=20.956 \mathrm{~cm}^{-1}$ for ${ }^{1} H^{19} F$, calculate the first three lines in the P and R branches in the vibration-rotation spectrum of HF .
d) How many normal modes of vibration does the molecule BF_{3} have? Sketch two of its bond stretching modes (non-degenerate) and indicate whether they are infrared active or not.

Useful Integrals

1. $\int x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
2. $\int x^{3} e^{-x^{2}} d x=0$
3. $\int_{0} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
4. $\int \sin \theta d \theta=-\cos \theta+$ constant
5. $d \tau=r^{2} \sin \theta d r d \theta d \phi$
6. $\int x^{n} d x=\frac{1}{a^{n+1}} \quad n \neq-1$
7. $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3}$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$F=N_{\lambda} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{n} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
		$\begin{aligned} & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \text { atrn K }{ }^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \times 10 \mathrm{~L} \mathrm{Tom} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{Js}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{3} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{8}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	mm_{4}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mathrm{c}^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon$ 。	$1.11265 \times 1 .{ }^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{3} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} / \mathrm{L}^{2} \mathrm{~m} \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \pi / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} h / m_{e} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-1}
Rydberg constant	$\mathrm{R}_{\infty}=m_{e} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-4}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-14} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

1 cal	4.184 j	oules ()		1 erg				$1 \times 10^{-7} \mathrm{~J}$		
1 eV	1.6022	2×10^{-19}		$1 \mathrm{eV} / \mathrm{molecule}$				$96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$		
Prefixes	f	p	a	μ	m.	c	d	k	M	G
	fermo	pico.	nano	micro	milli	centi	deci	kilo	mega	ga
	10^{-15}	10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	$1{ }^{\circ}$

PERIODIC TABLE OF ELEMENTS

GROUPS

]	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERRODS	11	$11 \wedge$	1118	IVB	VB	VIB	V118	VIIIB			13	113	IIIA	IVA	VA	yIA	VIIA	VIIIA
1									:					\because				$\begin{gathered} 4.003 \\ 11 \mathrm{c} \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 . \end{gathered}$	$\begin{aligned} & 9.012 \\ & \mathrm{Be} \\ & 4 \end{aligned}$									Atomi Sym Alom	ic mass \qquad nbol ic No.	$\begin{aligned} & 10.811 \\ & \rightarrow B \\ & 5 \end{aligned}$	$\begin{gathered} 12.011 \\ C \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ N \\ \therefore 7 \end{gathered}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ F \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ -\mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} 24.305 \\ \mathrm{Mg} \\ 12 \end{gathered}$				TRAN	ITION	ELEM	ENTS				$\begin{gathered} 26: 982 \\ \text { AI } \\ 13 \end{gathered}$	$\begin{gathered} 28.086 \\ \mathrm{Si} \\ 14 \end{gathered} .$	$\begin{gathered} 30.974 \\ \text { P } \\ 15 \end{gathered}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{Cl} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \mathrm{Ar} \\ 18 \end{gathered}$
4	$\begin{array}{c\|} \hline 39.098 \\ K \\ 19 \\ \hline \end{array}$	40.078 Ca 20	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ \mathrm{Ti} \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ V \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S} 1.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 55.847 \\ \mathrm{Fe} \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ -\quad 27 \\ \hline \end{gathered}$	$\begin{gathered} 58.69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ 7 n \\ 30 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 69.723 \\ G a \\ 31 \\ \hline \end{array}$	$\begin{gathered} 72.61 \\ \text { Ge } \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As. } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Sc} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ K r \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} 85.468 \\ \mathrm{Rb} \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} \hline 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathrm{Zr} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \mathrm{Mo} \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ T \mathrm{c} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.94 \\ R 1 \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \mathrm{Pd} \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \mathrm{Ag} \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} 112: 41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{gathered}$	$\begin{gathered} 114.82 \\ \mathrm{ln} \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} 118.71 \\ S a \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ \mathrm{Sb} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ \mathrm{Te} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ 1 \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.29 \\ \mathrm{Xe} \\ 54 \\ \hline \end{gathered}$
6	$\begin{gathered} 132.91 \\ \mathrm{Cs} \\ 55 \end{gathered}$	$\begin{gathered} 137.33 \\ \mathrm{Ba} \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} 138.91 \\ { }^{*} \mathrm{La} \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \mathrm{Hf} \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ 7 n \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ 7 \\ 74 \end{gathered}$	$\begin{gathered} 186.21 \\ \mathrm{Re} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \mathrm{Ir} \\ 77 \\ \hline \end{gathered}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 196.97 \\ \text { Au } \\ 79 \\ \hline \end{gathered}$	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ 80 \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{Tl} \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ \mathrm{B2} \\ \hline \end{gathered}$	$\begin{gathered} \hline 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} (209) \\ \text { Po } \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} \hline(210) \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ \operatorname{Rn} \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathrm{Pr} \\ & 87 \end{aligned}$	$\begin{gathered} 226.07 \\ R n \\ 88 \\ \hline \end{gathered}$	$\begin{gathered} \text { (227) } \\ { }^{* *} \mathrm{Ac} \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ R f \\ 104 \\ \hline \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & \hline(263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{aligned} & \hline(262) \\ & \text { Uns } \\ & 107 . \end{aligned}$	$\begin{aligned} & (265) \\ & \text { Uno } \\ & 108 \end{aligned}$	$\begin{aligned} & \text { (266) } \\ & \text { Une } \\ & 109 \end{aligned}$	$\begin{aligned} & \text { (267) } \\ & \text { Uun } \\ & 110 \\ & \hline \end{aligned}$		\because						

*Lanthanide Scrics
**Aclinide Scrics

| 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.97 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ce | Pr | Nu | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| 232.04 | 231.04 | 278.03 | 237.05 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |
| Th | Pa | U | Np | Pu | Am | Cm | BK | Cf | Cs | Fm | Md | No | Lr |
| 90 | 91 | 92 | 9 J | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |

() indicates the mass number of the isolope with the longest half-life.

