UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME: THREE (3) HOURS

INSTRUCTIONS:

٩,

There are six (6) questions. Each question carries 25 marks. You are required to answer any four (4) questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 (25 MARKS)

- a) Explain how Einstein's introduction of quantization of energy accounted for the properties of heat capacity at low temperatures [4]
- b) In an x-ray photoelectron experiment, a photon of wavelength 121 pm ejects an electron and it emerges with speed of 5.69 x 10⁷ m/s. calculate the binding energy of the electron.
 [3]
- c) For the following operator and function, show that the function is an eigenfunction
 of the operator and determine the eigenvalue.

$$\frac{Operator}{dx^2} - 4 \qquad \frac{Bigenfunction}{3\cos 2x} \qquad [3]$$

- d) What is the de Broglie wavelength of an electron accelerated to 100 eV [3]
- e) A photon of radiation with a wavelength of 305 nm ejects an electron from a metal with a kinetic energy of 1.77eV. Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
- f) By evaluating the commutator, [x, P_x], show whether the operators for position and momentum commute. [4]
- g) Two (unormalised) excited state wavefunctions of the hydrogen atom are

$$_{A)} \qquad \psi(r) = \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$$

B)
$$\psi(r,\theta,\phi) = r\sin\theta\cos\phi e^{-r/2a_0}$$

Show that these two functions are mutually orthogonal.

[4]

QUESTION 2 (25 MARKS)

- a) A particle is in a state described by the function $\psi(x) = 0.632e^{2ix} + 0.775e^{-2ix}$. What is the probability that the particle will be found with momentum $2\hbar$ [3]
- b) Consider the energy eigenvalues of a particle in a one dimensional box $E_n = \frac{h^2 n^2}{8mL^2}$, n =1,2,3,...as a function of *n*, *m* and *L*.
 - (i) By what factor do you need to change the box length L to decrease the zero point energy by a factor of 400 for a fixed value of *m*? [3]
 - (ii) By what factor would you have to change *n* for fixed values of L and m to increase the energy by a factor of 400? [3]
 - (iii) By what factor would you have to increase L to have the zero point energy of an electron be equal to the zero point energy of a proton?
 [4]
- c) The function $\psi(x) = x \left(1 \frac{x}{L}\right)$, is an acceptable function for a particle in a one dimensional box of length L and with infinitely high walls.
 - (i) Normalize $\Psi(\mathbf{x})$ [6]
 - (ii) Calculate the expectation value <x> [6]

QUESTION 3 (25 MARKS)

a) The total energy eigenvalues of the hydrogen atom are given by

 $E_n = -\frac{e^2}{8\pi\varepsilon_0 a_0 n^2}$, n = 1, 2, 3,... and the three quantrum numbers associated with the total energy eigenvalues are related by n = 1, 2, 3,...; I = 0, 1, 2,... n – 1; and m_l = 0, ± 1,±2,±3,...,±I. Using the notation Ψ_{nlm_l} , list all eigenfunctions that have the following energy eigenvalues and hence give the degeneracy of these energy levels:

(i)
$$\mathsf{E} = -\frac{e^2}{32\pi\varepsilon_0 a_0}$$
[3]

(ii)
$$\mathsf{E} = -\frac{e^2}{72\pi\varepsilon_0 a_0}$$
[3]

- b) Calculate the mean value of the radius, <r>, at which you would find an electron if the H atom wave function is $\Psi_{210}(r,\theta,\phi) = \frac{1}{4\sqrt{2\pi a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \cos\theta$ [7]
- c) Define the quantum numbers L and S as applied to many electron atoms, indicating the kind of values they may have. State the physical meaning of the two quantum numbers in quantitative terms. Under what conditions are L and S no longer valid as quantum numbers? State then reason in a sentence or two. [7]
- d) Derive the term symbols for the electron configuration ns¹nd¹. Which of these terms has the lowest energy? [5]

QUESTION 4 (25 MARKS)

a) The ionization energies (I) of an electron from the valence orbitals on a carbon and an oxygen atoms are given in the table below:

Atom	Valence orbital	I/MJ mol ⁻¹					
0	2s	3.116					
	2р	1.524					
С	2s	1.872					
	2p	1.023					

- (i) Use these data to construct a molecular orbital energy diagram for CO.[5]
- (ii) What is the electron configuration of the ground state of CO? [1]

[1]

[1]

- (iii) What is the bond order of CO?
- (iv) Is CO paramagnetic or diamagnetic?
- b) The highest occupied molecular orbitals for an excited electronic configuration of an oxygen molecule are $(|\pi_g)^1 (2\sigma_u^*)^1$. Determine the molecular term symbols for oxygen in this electronic configuration. [5]

- c) The photoelectron spectrum of NO was obtained using He 58.4 nm (21.22 eV) radiation. It consisted of a strong peak at kinetic energy 4.69 eV and a series of 24 lines starting at 5.56 eV and ending at 2.2 eV. A shorter series of six lines began at 12.0 eV and ended at 10.7 eV. Account for this spectrum. [7]
- d) When light of wavelength 440 nm passes through a 3.5 rrim of solution of an absorbing substance with a concentration of 0.667 mmol/L, the transmittance is 65.5 %.Calculate the molar absorption coefficient of the solute at this wavelength and express the answer in cm²mol⁻¹.

QUESTION 5 (25 MARKS)

- a) Determine the number of translational, rotational and vibrational degrees of freedom in the following molecules:
 - (i) CH_3CI (ii) OCS (iii) C_6H_6 (iv) H_2CO [6]
- b) Classify each of the following molecules as spherical , a symmetric or an asymmetric top:
 - (i) CH_3CI (ii) CCI_4 (iii) SO_2 (iv) SF_6 [4]
- c) The rotational constant of ²D¹⁹F determined from microwave spectroscopy is 11.007 cm ⁻¹. The atomic masses of ¹⁹F and ²D are 18.9984032 u and 2.0141018 u, respectively. Calculate the bond length in ²D¹⁹F to the maximum number of significant figures consistent with this information. [7]
- d) The pure rotational Raman spectrum of ¹⁴N₂ shows a spacing of 7.99 cm⁻¹ between adjacent rotational lines.
 - (I) Calculate the value of the rotational constant B. [2]
 - (II) What is the spacing between the unshifted line v_{ex} and the pure rotational line closest to v_{ex} ? [2]
 - (III) If 540.8 nm radiation from an argon laser is used as the exciting radiation, find the wavelength of the two pure rotational Raman lines nearest to the unshifted lines. [4]

QUESTION 6 (25 MARKS)

,

a) The force constant of ⁷⁹ Br ⁷⁹ Br is 240 N m ⁻¹ and the atomic r Calculate	nass of ⁷⁹ Br is 78.9183 u.
(i) The fundamental vibration frequency $\overline{\mathcal{V}}$ and	[3]
(ii) The zero point energy of $^{79}Br_2$	[3]
b) The fundamental line in the infrared spectrum of ¹² C ¹⁶ O of the first overtone occurs at 4260.0 cm ⁻¹ . Calculate	ccurs at 2143.0cm ⁻¹ , and
(i) The fundamental vibrational frequency, $\overline{m{ u}}$, and the	e anharmonicity constant,
χ_e	[5]
(ii) The exact zero point energy of CO.	[3]
c) Given that the fundamental vibrational frequency \overline{v} = rotational constant B = 20.956 cm ⁻¹ for ¹ H ¹⁹ F, calculate the and R branches in the vibration-rotation spectrum of HF.	
d) How many normal modes of vibration does the molecule Bl	₃ have? Sketch two of its
bond stretching modes (non-degenerate) and indicate w	hether they are infrared
active or not.	[5]
Total Marks	/100/

Useful Integrals

e

1.
$$\int x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

2.
$$\int x^3 e^{-x^2} dx = 0$$

3.
$$\int_0 x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

4.
$$\int sin\theta d\theta = -cos\theta + constant$$

5.
$$d\tau = r^2 sin\theta dr d\theta d\phi$$

6.
$$\int x^n dx = \frac{1}{a^{n+1}} \qquad n \neq -1$$

7.
$$\int_0^{2\pi} cos^2 \theta sin\theta d\theta = \frac{2}{3}$$

٠

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	, C	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{A}e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N.	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	•	×
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m,	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πe.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi X 10^{-7} J s^{-2} C^{-2} m^{-1}$
		$4\pi X 10^{-7} T^2 J^{-1} m^3$
Magneton		•
Bohr	$\mu_{\rm B} = e \hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm o}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
gvalue	Se	2.002 32
Bohr radius	$a_{p} = 4\pi \epsilon_{o} \hbar/m_{e} e^{2}$	5,291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{o}e^{2}c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}e^{4}/8h^{3}c\varepsilon_{e}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	Ğ	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =)-7 J 5 kJ mol	
Prefixes	f	p	n	μ	ш・	С	d	k .	М	G
	femto 10 ⁻¹⁵	pico . 10 ⁻¹²	nano 10 ⁻⁹	micro 10 ⁻⁶	milli 10 ⁻³	centi 10 ⁻²	deci 10 ⁻¹	kilo 10'	mega 10 ⁶	giga 10 ⁹
		• .					•			

PERIODIC TABLE OF ELEMENTS

GROUPS																		
]	2	.3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	١٨	11/	IIIB	IVB	·VB	VIB	VIIB		VIIIB		IB	118	AIII	IVA	VA	VIA	VIIA	VIIIA
1	800,1 11 1								a *								,	4,003 11c 2
	6.941	9.012								•		nic mass -	1		1		18.998	20.180
2	Li	Be			i se estas Alta de la composición de la		×					mbol -	B	C	N	0	F	-Ne
	3.	4		1.1							Ator	nic No. –	- 5	Ğ	27	8	9	10
3	22.990 Na 11	24,305 Mg 12				TRAN	ISITIO	n elen	MENTS				26.982 Al 13	28.086 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	. 69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn ·	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Sc	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102,94	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cď	In	Sn	Sb	Te	I	Xc
·	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Rc	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80 '	81	82	83	84	85	86
7	223 Fr 87	226.03 Rn 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107 .	(265) Uno 108	(266) Une 109	(267) Uun 110				• • •			•	
			· r							·								•
•				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	1	17.4.97	
*La	nthanid	c Scrics		Cc 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	H0 • 67	Er 68	Tm 69	Yb 70	Lu 71	
												· · · · · · · · · · · · · · · · · · ·	·					
**/	Actinide	Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
	•			Th 90	Pa 91	U 92 ·	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103	· •

() indicates the mass number of the isotope with the longest half-life.