DEPARTMENT OF CHEMISTRY

4

ŧ

UNIVERSITY OF SWAZILAND

NOVEMBER 2015 FINAL EXAMINATION

TITLE OF PAPER	:	Analytical Chemistry II: Fundamentals of Spectrophotometry
COURSE NUMBER	:	C304
TIME	:	3 HOURS
Important Information	:	1. Each question is worth 25 marks.
		2. Answer questions one (1) and any other three (3)
		questions in this paper.
		3. Marks for ALL procedural calculations will be awarded.
		4. Start each question on a fresh page of the answer sheet.
		5. Diagrams must be large and clearly labelled accordingly.
		6. This paper contains an appendix of chemical constants
		7. Additional material: graph paper and data sheet

You are not supposed to open this paper until permission has been granted by the chief invigilator

a) Study the chromatograph (below) of a mixture of Compounds A and B, run on the GC in the teaching lab at UNISWA.

- i) What is the retention time of compound A? Compound B? (1)
- ii) Which compound is present in a larger amount? Explain (2)
- iii) Which compound has the lower boiling point? Explain (2)
- What would happen to the retention times of compounds A and B if the column temperature were raised? Explain (2)
- v) You suspect that compound B is octane. What can you do to provide supporting evidence for this hypothesis? Explain 2 different ways how this can be achieved. (4)
- b) A student wanted to investigate the green colour in some leaves by paper chromatography using the organic solvent ethanol. The results are shown below:

- i) Suggest why the student used ethanol and not water in her investigation. (1)
- ii) State and explain the conclusion which the student can make about the colouring matter in the leaves. (2)
- iii) Explain why some of the coloured material had not moved from the original spot. (2)
- iv) Explain why a pencil and not a pen is used to draw the base line. (1)
- v) Suggest why repeating the experiment with a different solvent may give more information. (2)
- vi) Identify the mobile and stationary phase in the separation technique. (2)
- c) Outline how the technique of column chromatography could be used to separate a mixture of two compounds. (4)

- a) The structures of four organic compounds are shown below:
 - W CH₂CICH₂CI
 - $X CH_2CH_2$
 - Y CH₃CH₃
 - Z CH₂CHCHCH₂
- i) Identify the compounds that most strongly absorb ultraviolet radiation. Explain your choice(3)

ii) Identify the compound which absorbs ultra violet radiation of the longest wavelength, and explain your choice. (3)

- b) β –carotene has a molar absorptivity (ε) of 100 000dm3mol-1cm-1 at a certain wavelength.
 Calculate the amount of carotene in a 1.0 × 1.0 × 1.0 cm cell needed to absorb 90% of the incident radiation. (4)
- c) The figure below depicts the visible region of the electromagnetic spectrum and the two regions nearest to it.

- Name the regions labelled A and B, identify the atomic and molecular processes associated with each region and compare the energies of the photons involved in these processes. (5)
- ii) State, giving a reason, which region (A or B) could be used to:
 - Test for metal atoms (1)
 - Obtain information about the strengths of bonds (1)
- d) What is liquid liquid extraction? What is the other name for liquid liquid extraction? (4)
- e) Another method which can be used for extraction is the solid phase extraction. Give four advantages of using SPE over the liquid liquid extraction. (4)

a) The amount of caffeine (C8H10N4O2) added to paracetamol (C8H9NO2) tablets must be carefully controlled. Small amounts of caffeine can increase the pain-relieving properties of the paracetamol, but large amounts of caffeine in combination with paracetamol can lead to liver damage. A paracetamol tablet was analyzed using HPLC and the following chromatogram produced.

- i) Explain why HPLC and not GC is used to analyse the tablet. (3)
- ii) Identify which of the peaks corresponds to caffeine and explain your choice. (2)
- iii) Explain the relative retention times of the two substances. (3)
- b) Derivatization is the process of chemically modifying a compound to produce a new compound which has properties that are suitable for analysis using a GC.
- i) Explain three (3) scenarios which would require that a sample be first derivatized before being analysed using GC. (3)
- ii) Give the three main types of derivatization methods. For each of the methods;
 - Explain how the derivatisation is carried out.
 - Give one example of a reagent used to achieve the form of derivatisation. (9)
- c) Which detector is used for the analysis of halogenated hydrocarbons using the GC method?
 Give a brief description of how this detector operates. (5)

a) Organic compounds are often identified by using more than one analytical technique. Some of these techniques were used to identify the compounds in the following reaction.

$$C_3H_8O \rightarrow C_3H_6O$$

A B

i) Using H_2O as an example, describe what happens, at molecular level, during the absorption of infrared radiation. (3)

5

- ii) The infrared spectrum of A showed a broad absorption at 3350cm⁻¹. The infrared spectrum of B did not show this absorption, but instead showed absorption at 1720 cm⁻¹. Explain what these results indicate about the structures of A and B. (3)
- iii) Draw the two possible structures of B. Label the functional group for each (4)
- b) State the light source for AAS. Explain how it works, including why a different lamp must be used for each element (6)
- c) A major breakthrough in atomic absorption spectrophotometry was the invention of graphite furnace AA.
 - i) What is the major difference between flame AA and graphite furnace AA? Use diagrams to support your answer. (3)
 - ii) Identify the physical stages involved in the furnace program and describe the processes that occur during each stage. (3)
 - iii) Outline three (3) advantages of graphite furnace AA over flame AA. (3)

- a) State Beer's Law as applied to spectroscopy, and explain all terms appearing in it. (3)
- b) Deviations from Beer Lambert law classified into three categories. List these three categories, giving detailed explanation, causes and examples of each. (9)
- c) Use equations to explain why stray light leads to negative deviations from Beer's Law (4)
- d) An absorption in an electronic spectrum is recorded at 17 000 cm⁻¹. What does this correspond to in nm? (2)
- e) Explain the process of atomization and why it is needed for analysis using the AAS. (3)
- f) Gratings are used in monochromators instead of prisms. Gratings have a very good resolving power in spectroscopy
 - i) Physically how does a grating look like[1]
 - ii) Use equations to explain how a grating works [3]

- a) Differentiate between "Spectroscopy" and "Spectrometry" (2)
- b) Explain how and why molecular and atomic spectra are different. In other words, describe the differences in the spectra you record and then explain physically what happens within the atoms/molecules to give these differences. (5)
- c) One very useful detector in atomic spectrometry is the Photomultiplier Tube. Draw and label the "PMT', explain how it works. (5)
- d) Considering a typical spectrophotometer what is the effect of decreasing the exit slit width of the monochromator on the light incident of the sample. (2)

e) Given the HPLC chromatogram below for a mixture of barbiturates;

- Calculate the number of theoretical plates based on the Amobarbital peak using your best estimate of the required parameters from the chromatogram. (3)
- ii) Referring to the chromatogram at the top, assuming that barbital is more polar than phenobarbital which is more polar than talbutal, etc, was this experiment run under normal or reverse phase conditions? Explain (4)
- For the HPLC technique what is meant by gradient elution and give 2 scenarios why you would need to use it? (4)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
Н																	He
1.0079																	4.0025
3	4											5	6	7	8	9	10
LI	Be											B	С	N	0	F	Ne
6.941	9.0122											10.311	12.011	14.007	15.999	18.998	20.180
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	· S	Cl	Ar
22.990	24.305											26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	25	27	28	29	30	31	32	33	34	35	36
К	Ca	Sc	Ti	V	Cr	Mn	۶e	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
.39.098	40.078	44.956	47.83	50.942	51.996	54.938	35.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
35.468	87.62	88.906	91.224	92.906	95.94	(98)	1 01.07	102.91	105.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	1-1f	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.95	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(7)	(?)] *						

Periodic Table of the Elements

hides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
thar	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lar	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	152.50	164.93	167.26	168.93	173.04	174.97
es	90	91	92	93	94	95	96	97	98	99	100	101	102	103
inid	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Act	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

PHYSICAL CONSTANTS AND UNITS

...*

Table 1 : General Physical Constants								
Constant	Symbol	SI Units	Non-SI Units					
Velocity of Light	C ·	2.9979 × 10 ⁸ m s ⁻¹						
Electronic charge	е	-1.6022×10^{-19} C						
Avogadro's constant	N _A	$6.0220 \times 10^{23} \text{ mol}^{-1}$						
Atomic mass uni t	u	$1.6606 \times 10^{-27} \text{ kg}$						
Electron rest mass	m _e	9.1095×10^{-31} kg	×					
Proton rest mass	mp	1.6726 × 10 ⁻²⁷ kg						
Neutron rest mass	mn	$1.6750 \times 10^{-27} \text{kg}$:					
Planck's constant	h	$6.6262 \times 10^{-34} \text{ J s}$						
Rydberg constant	R _H	$1.0974 \times 10^7 \mathrm{m}^{-1}$						
Ideal gas constant	R	8.314 J mol ⁻¹ K ⁻¹	0.08206 l atm mol ⁻¹ K ⁻¹					
Gas molar volume (STP)	Vo	$2.21414 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$	22.4 l mol ⁻¹					
Boltzmann constant	k	$1.3807 \times 10^{-23} \text{ J K}^{-1}$						
Faraday constant	F	96485 C mol ⁻¹						
Gravitational acceleration	g	9.80 m s ^{−2}						
Permittivity of a vacuum	ε _o	8.8542 × 10 ⁻¹² F m ⁻¹						
Mechanical equivalent of heat		1 calorie \equiv 4.18 J						

Prefix	es:					****	****	
D	n	m	m	с	d	k	M	G
nico	nano	micro	milli	centi	deci	kilo	mega	giga
10-12	10	10-5	10-3	10-2	10-1	103	104	109

Table of Characteristic IR Absorptions

	frequency, cm ⁻¹	bond	functional group
	3640-3610 (s, sh)	O-H stretch, free hydroxyl	alcohols, phenols
	3500-3200 (s,b)	O-H stretch, H-bonded	alcohols, phenols
	3400-3250 (m)	N–H stretch	1°, 2° amines, amides
	3300-2500 (m)	O-H stretch	carboxylic acids
	3330–3270 (n, s)	C≡CH: CH stretch	alkynes (terminal)
	3100-3000 (s)	C-H stretch	aromatics
	3100-3000 (m)	=C-H stretch	alkenes
	3000-2850 (m)	C-H stretch	alkanes
,	2830-2695 (m)	HC=O: C-H stretch	aldehydes
	2260-2210 (v)	C=N stretch	nitriles
	2260-2100 (w)	C=C- stretch	alkynes
	1760-1665 (s)	C=O stretch	carbonyls (general)
	1760–1690 (s)	C=O stretch	carboxylic acids
	1750–1735 (s)	C=O stretch	esters, saturated aliphatic
	1740-1720 (s)	C=O stretch	aldehydes, saturated aliphatic
	1730–1715 (s)	C=O stretch	α , β -unsaturated esters
	1715 (s)	C=O stretch	ketones, saturated aliphatic
	1710-1665 (s)	C=O stretch	α , β -unsaturated aldehydes, ketones
	16801640 (m)	C=C- stretch	alkenes
	1650-1580 (m)	N-H bend	1° amines
	1600–1585 (m)	CC stretch (in-ring)	aromatics
	1550–1475 (s)	N-O asymmetric stretch	nitro compounds
	1500-1400 (m)	C-C stretch (in-ring)	aromatics
	1470-1450 (m)	C-H bend	alkanes
	1370-1350 (m)	C-H rock	alkanes
	1360-1290 (m)	N-O symmetric stretch	nitro compounds
	1335-1250 (s)	C-N stretch	aromatic amines
	1320-1000 (s)	C-O stretch	alcohols, carboxylic acids, esters, ethers
	1300-1150 (m)	C-H wag (CH ₂ X)	alkyl halides
	1250-1020 (m)	C-N stretch	aliphatic amines
	1000-650 (s)	=C-H bend	alkenes
	950-910 (m)	O-H bend	carboxylic acids
	910-665 (s, b)	N–H wag	1°, 2° amines
	900675 (s)	СН "оор"	aromatics
	850–550 (m)	CCl stretch	alkyl halides
	725–720 (m)	CH rock	alkanes
	700–610 (b, s)	C≡CH: CH bend	alkynes
	690515 (m)	C-Br stretch	alkyl halides

m=medium, w=weak, s=strong, n=narrow, b=broad, sh=sharp

1