DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

JUNE/JULY 2016 SUPPLEMENTARY EXAMINATION

TITLE OF PAPER		Analytical Chemistry II: Fundamentals of Spectrophotometry
COURSE NUMBER	:	C304
time	:	3 HOURS
Important Information	:	1. Each question is worth 25 marks.
		2. Answer ANY four (4) questions
		3. Marks for ALL procedural calculations will be awarded.
		4. Start each question on a fresh page of the answer sheet.
		5. Diagrams must be large and clearly labelled accordingly.
		6. This paper contains an appendix of chemical constants
		7. Additional material: graph paper and data sheet

QUESTION 1 [25]

a) Differentiate between "Spectroscopy" and "Spectrometry" [4]
b) Several analytical techniques are based on the absorption of energy from different parts of the electromagnetic spectrum.

The following diagram shows part of the electromagnetic spectrum;

X-Rays	\mathbf{P}	Visible	\mathbf{Q}	Microwaves

i) Identify the types of radiation labelled P and Q [2]
ii) Identify which one of the five regions has radiation of lowest frequency [2]
c) Explain how and why molecular and atomic spectra are different. In other words, describe the differences in the spectra you record and then explain physically what happens within the atoms/molecules to give these differences. Use diagrams to illustrate [5]
d) This question relates to the following spectrum:

i) For the largest peak in the spectrum, calculate the energy in Joules per photon. Estimate any quantities you need from the scale on the spectrum [4]
ii) Calculate the frequency (in Hertz) for this same peak [2]
iii) In what region of the electromagnetic spectrum (e.g. x-ray, gamma ray, ultra violet and micro-wave) does this peak fall? [2]
e) Explain the different uses of atomic spectrometry in analytical chemistry? (Give 2) [4]

QUESTION 2 [25]

a) Sketch out the main components in FES and AAS and highlight the main difference [4]
b) Which group of elements can be determined by FES? Explain why the technique is limited to these elements [2]
c) What is the role of the monochromator in AAS? [2]
d) With an aid of a diagram describe how does a hollow cathode lamp works [5]
e) An internal standard in analytical chemistry is a chemical substance that is added in a constant amount to samples, the blank and calibration standards in a chemical analysis. The method of internal standards is used to improve the precision of quantitative analysis.
i) Give two characteristics of a "good" internal standard.
ii) In ICP-MS analysis, choose one internal standards; Bi, Sc or In for each of the following analytes; Cd, Pb and Cr and explain why you chose as you did?
iii) Explain why an internal standard can be used for Inductively Coupled Plasma Emission ICP-AES but is not used for AAS
f) Give an example of chemical interference in AAS. Describe the fundamental problem and how you would solve it [3]

QUESTION 3 [25]

a) The following two solvent systems were found to separate compounds X and Y by column chromatography (column more polar):
X : hexanes/ethyl acetate $10: 1$
Y : hexanes/ethyl acetate 10:4

Which is the more polar compound, X or Y ? (2)
b) In order to separate a mixture of X and Y as in problem 3(a) by column chromatography:
i) Which solvent system must be used first? (2)
ii) Which compound will elute from the column first (assuming you chose the correct solvent)? (2)
iii) You only see one compound coming off the column when you suspect two. Where might the other compound be? How can you recover this compound? (2)
c) The design of different spectrophotometers depends on the type of measurement (e.g. atomic emission, atomic absorption, uv-visible absorption, fluorescence) they are intended to take.
i) Draw a block diagram of a single beam spectrophotometer that might be used for uvvisible molecular absorbance. (4)
ii) Write the specific components of each block of your block diagram. (3)
d) In 2001, the Swaziland Water Services Corporation acquired a new atomic spectrometer called Liberty 110 ICP.
(i) What does ICP stand for?
(ii) Draw the ICP torch and label its components
(iii) Concisely explain why chemical interferences are less common in ICP-AES than they are in flame AAS. (2)
(iv) List and describe each of the three (3) advantages that ICP has over flame atomic absorption spectroscopy. (3)

QUESTION 4 [25]

a) The Deuterium lamp is one of the radiation sources used in UV-visible spectroscopy. Using equations, explain how the lamp is able to produce a continuum radiation ($160-380 \mathrm{~nm}$) [5]
b) Consider the reactions of two unknown compounds X and Y.

$$
\begin{aligned}
& \mathrm{X}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12} \\
& \mathrm{Y}+2 \mathrm{H}_{2} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}
\end{aligned}
$$

i) Deduce the molecular formula of the two unknown compounds

The UV spectra of the compounds are compared to pent-1-ene in the table below.

Compound	$\lambda_{\max }$
X	176
Y	211

Pent-1-ene 178
ii) Draw the structures of compounds X and Y and explain the choice of structure for each.
c) A student wanted to determine a more accurate value for the solution of $\mathrm{Mn}^{2+}(\mathrm{aq})$ which was known to be between 0.10 and 0.010 M . She was provided with a solution of 1.00 M manganese (II) sulphate, MnSO_{4}. Describe how she could determine the unknown
concentration using visible spectrometer and explain the importance of the Beer - Lambert law in the method used. [6]
d) Which type of GC detector is most commonly used? Explain its working principle and what are its limitations?

QUESTION 5[25]

a) IR spectroscopy is a technique mostly used for qualitative analysis of organic compounds.
i) State what happens at molecular level when infrared radiation is absorbed.
ii) Explain the two criteria required for a molecule to absorb IR radiation.
iii) Which of the molecules iodine and hydrogen iodide is \mathbb{R} active and why?
b) There are four isomeric alcohols with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.
i) Draw a structure for each of the four alcohols. [2]
ii) Explain why the four compounds could not be easily distinguished by looking at their infrared spectra. [2]
a) Nebulization is a very wasteful approach to atomization.
i) What does the term "nebulization" mean?
ii) Use diagrams to explain how nebulization is carried out in atomic spectroscopy. [4]
iii) Use your answer in (c) ii above to explain why nebulization is considered inefficient. [2]
b) In chromatography, what do you understand by column efficiency and how is it expressed? Explain all terms appearing in the equation.
[5]

QUESTION 6 [25]

a) With the aid of a diagram, briefly but informatively explain how the following detectors work in chromatography:
i) Electron Capture Detector [4]
ii) Flame Ionization Detector
b) Draw the main components of a GC. Explain the function of each function.
c) What are the main differences between High Performance Liquid Chromatography and Gas Chromatography?
d) The two most common types of columns used in high performance liquid chromatography (HPLC) are " C_{8} " and " C_{18} " columns
i) Explain the difference(s) between a " C_{8} " column and a " C_{18} " column
ii) Explain why these two particular types of columns are used for "reverse phase" HPLC. [3]
e) Explain why it is necessary to use a "guard column" in an HPLC but not in a GC.

Usefiul Relations	General Data		
(RT) $208.15 \times 24789 \mathrm{kl} / \mathrm{mol}$	speed of light	c	$2.997925 \times 10^{6} \mathrm{~m}^{-1}$
(RT/F) $)_{298}$. $1 \mathrm{sK}=0.025693 \mathrm{~V}$	clarge of proton	e	$1.60219 \times 10^{19} \mathrm{C}$
T/K: $\quad 100.15 \quad 298.15 \quad 500.15 \quad 1000.15$	Faraday constant	$\mathrm{F}=\mathrm{Le}$	$9.64846 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
$\begin{array}{ccccccl} \\ \mathrm{T} / \mathrm{Cm}^{-1} & 69.61 \quad 207.22 \quad 347.62 \quad 695.13\end{array}$	Bolizmamn constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}$
$1 \mathrm{mmHg}=133.222 \mathrm{Nm}^{-2}$	Gas constant	$\mathrm{R}=\mathrm{Lk}$	$8.31441 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
hc/k $=1.43878 \times 10^{-2} \mathrm{mK}$			$820575 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$1.01325 \times 10^{5} \mathrm{Nm}^{-2} 4.184 \mathrm{~J} \quad 1.602189 \times 10^{.10} \mathrm{~J} \quad 0.124 \times 10^{-3} \mathrm{eV}$	Planck constant	1	$6.62618 \times 10^{34} \mathrm{Js}$
760 tor $96.485 \mathrm{~kJ} /$ miol $1.9864 \times 10^{23 \mathrm{~J}}$ $8065.5 \mathrm{~cm}^{-1}$		$h=\frac{h}{2 \pi}$	$105459 \times 10^{34} \mathrm{J5}$
	Avogadro constant	L or $\mathrm{N}_{2 v}$	$6.02214 \times 10^{22} \mathrm{~mol}{ }^{11}$
	Alomis mass unit	$\begin{aligned} & \mathrm{u}=10^{-3} \\ & \mathrm{~kg} /(\mathrm{Lmol}) \end{aligned}$	$1.66054 \times 10^{27} \mathrm{~kg}$
	Electron mass	m_{e}	$9.10939 \times 10^{31} \mathrm{~kg}$
SI-mmits:	Proton mass	m_{p}	$1.67262 \times 10^{27} \mathrm{~kg}$
1 cal (thermochemical) $=4.184 \mathrm{~J}$	Neutron mass	m_{n}	$1.67493 \times 10^{27} \mathrm{~kg}$
dipole monent: 1 Debye $=3.33564 \times 10^{30} \mathrm{Cm}$	Vacuum permittivity	$\varepsilon_{0}=\mu_{0}^{-1} c^{-2}$	$8.854188 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{1}$
force: $1 \mathrm{~N}=11 \mathrm{~m}^{1}=1 \mathrm{kgms} s^{2}=10^{3}$ dyne pressure $1 \mathrm{~Pa}=1 \mathrm{Nm}^{2}=1 \mathrm{Jm}^{3}$	Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
power: $1 \mathrm{~W}=1 \mathrm{~s} \mathrm{~s}^{\text {I }} \quad$ potential: $I \mathrm{~V}=1 \int \mathrm{C}^{\text {1 }}$	Bolir magneton	$\mu_{n}=c h / 2 m \text {. }$	$927402 \times 10^{-24} \mathrm{JT}^{-1}$
magnetic flux $1 \mathrm{~T}=1 \mathrm{~V} \mathrm{sm}^{2}=1 \mathrm{JCsin}{ }^{2}$ current: $\mid \mathrm{A}=1 \mathrm{Cs}^{1}$	Nuclear magneton	$\mu_{N}=\mathrm{eh} / 2 \mathrm{~m}_{\mathrm{N}}$	$5.05070 \times 10^{-27} \mathrm{JT}^{-1}$
Prefixes:	Gravitational constant	G or g	$6.67259 \times 10^{11} \mathrm{Nm}^{2} \mathrm{~kg}{ }^{2}$
	Bohr radius	a_{0}	$5.29177 \times 10^{111} \mathrm{~m}$
pico nano micro milli centi deci kilo mega giga			
$10^{-12} 100^{2} 10^{6} \quad 10^{-3} 10^{-2} 10^{-1} \quad 10^{3} 1010^{6} 110^{2}$			

Periodic Table of the Elements

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{aligned} & 1 \\ & \mathrm{H} \\ & 1.0075 \end{aligned}$																	2 He 4.0026
$\begin{array}{\|r\|} \hline 3 \\ 6.941 \\ \hline \end{array}$												5 B 10.311	6 C 12.011	$\int_{i 4}^{7} \mathrm{~N}$	8 0 15.999	$\begin{gathered} 9 \\ \mathbf{F} \\ 18.998 \end{gathered}$	10 Ne 20.180
11 Na 22.990	12 Mg 24.305											13 Al 26.982	$\begin{gathered} 14 \\ \mathrm{Si} \\ 28.086 \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \\ \mathbf{P} \\ 30.974 \\ \hline \end{array}$	$\begin{aligned} & \hline 16 \\ & \cdot \mathrm{~S} \\ & 32.066 \\ & \hline \end{aligned}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ 35.453 \\ \hline \end{gathered}$	18 Ar 39.948
$\begin{gathered} 19 \\ \mathrm{~K} \\ \hline 39.098 \end{gathered}$	20 Ca 40.078	21 Sc 44.956	$\begin{gathered} 22 \\ 41 \\ 47.83 \\ \hline \end{gathered}$	$\begin{gathered} 23 \\ V \\ 50.942 \\ \hline \end{gathered}$	24 Cr 51.996	$\begin{aligned} & 25 \\ & \mathrm{Min} \\ & 54.938 \\ & \hline \end{aligned}$	25 Fe 35.847	27 Co	$\begin{aligned} & 28 \\ & \mathrm{Ni} \\ & 58.69 \\ & \hline \end{aligned}$	29 Cu 63.546	$\begin{array}{\|c\|} \hline 30 \\ \mathrm{Zn} \\ 65.39 \\ \hline \end{array}$	31 Ga 69.723	32 Ge 72.61	33 As 74.922	34 $5 e$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.904 \\ \hline \end{gathered}$	36 Kr 83.80
87 35.468	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \\ \hline \end{gathered}$	$\begin{gathered} 39 \\ \mathrm{Y} \\ 88.906 \\ \hline \end{gathered}$	40 Zr 91.224	41 Nb	42 Mo 95.94	43 Tc (98)	44 Ru 131.07	45 Rh 102.91	46 Pd 105.42	47 Ag 107.87	48 Cd 112.41	49 in 114.82	$\begin{gathered} 50 \\ \mathrm{Sn} \\ \mathbf{1 1 8 . 7 1} \end{gathered}$	51 5b 121.75	52 Te 127.60	$\begin{gathered} 53 \\ 1 \\ 126.90 \\ \hline \end{gathered}$	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	$\begin{gathered} \hline 57 \\ \mathrm{La} \\ 138.91 \end{gathered}$	$\begin{gathered} 72 \\ 89 \\ 178.09 \end{gathered}$	$\begin{gathered} 73 \\ \mathrm{Ta} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} 74 \\ W \\ 183.95 \end{gathered}$	75 Re 186.21	76 Os 990.2	$\begin{array}{\|c\|} \hline 77 \\ \text { Ir } \\ 192.22 \\ \hline \end{array}$	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.03	89 Ac 227.03	104 Rf (251)	105 Db (262)	106 Sg (263)	107 Bh (262)	$\begin{gathered} 108 \\ \mathrm{Hs} \\ i 265) \end{gathered}$	109 Mt (266)	$\begin{gathered} 110 \\ \mathrm{Ds} \\ \mathrm{in} \end{gathered}$	111 Rg (7)							

«	90	91	92	93	94	95	96	97	98	99	100	101	102	103
它	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
¢	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

PHYSICAL CONSTANTS AND UNITS

Table 1: General Physical Constants			
Constant	Symbol	glunits	Non-SIUnits
Velocity of Light	c	$2.9979 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$	
Electronic charge	e	$-1.6022 \times 10^{-19} \mathrm{C}$	
Avogadro's constant	$N_{\text {A }}$	$6.0220 \times 10^{23} \mathrm{~mol}^{-1}$	
Atomic mass unit	u	$1.6606 \times 10^{-27} \mathrm{~kg}$	
Electron rest mass	$m_{\text {e }}$	$9.1095 \times 10^{-31} \mathrm{~kg}$	*
Proton rest mass	m_{p}	$1.6726 \times 10^{-27} \mathrm{~kg}$	
Neutron rest mass	m_{n}	$1.6750 \times 10^{-27} \mathrm{~kg}$	
Planck's constant	h	$6.6262 \times 10^{-34} \mathrm{Js}$	
Rydberg constant	$R_{\text {H }}$	$1.0974 \times 10^{7} \mathrm{~m}^{-1}$	
Ideal gas constant	R	$8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$	$0.082061 \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Gas molar volume (STP)	V 。	$2.21414 \times 10^{-2} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$	$22.4 \mathrm{I} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.3807 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$	
Faraday constant	F	$96485 \mathrm{C} \mathrm{mol}^{-1}$	
Gravitational acceleration	g	$9.80 \mathrm{~m} \mathrm{~s}^{-2}$	
Permittivity of a vacuum	ε_{0}	$8.8542 \times 10^{-12} \mathrm{Fm}^{-1}$	
Mechanical equivalent of heat		1 calorie $\equiv 4.18 \mathrm{~J}$	

Table of Characteristic IR Absorptions

frequency, cm^{-1}	bond	functional group
3640-3610 (s, sh)	O-H stretch, free hydroxyl	alcohols, phenols
3500-3200 (s,b)	O-H stretch, H-bonded	alcohols, phenols
3400-3250 (m)	$\mathrm{N}-\mathrm{H}$ stretch	$1^{\circ}, 2^{\circ}$ amines, amides
3300-2500 (m)	$\mathrm{O}-\mathrm{H}$ stretch	carboxylic acids
3330-3270 (n, s)	$-\mathrm{Cm} \mathrm{C}-\mathrm{H}: \mathrm{C}-\mathrm{H}$ stretch	alkynes (terminal)
3100-3000 (s)	$\mathrm{C}-\mathrm{H}$ stretch	aromatics
3100-3000 (m)	= $\mathrm{C}-\mathrm{H}$ stretch	alkenes
3000-2850 (m)	$\mathrm{C}-\mathrm{H}$ stretch	alkanes
2830-2695 (m)	$\mathrm{H}-\mathrm{C}=\mathrm{O}: \mathrm{C}-\mathrm{H}$ stretch	aldehydes
2260-2210 (v)	$\mathrm{C} \equiv \mathrm{N}$ stretch	nitriles
2260-2100 (w)	$-\mathrm{C} \equiv \mathrm{C}-$ stretch	alkynes
1760-1665 (s)	$\mathrm{C}=0$ stretch	carbonyls (general)
1760-1690 (s)	$\mathrm{C}=0$ stretch	carboxylic acids
1750-1735 (s)	$\mathrm{C}=\mathrm{O}$ stretch	esters, saturated aliphatic
1740-1720 (s)	$\mathrm{C}=\mathrm{O}$ stretch	aldehydes, saturated aliphatic
1730-1715 (s)	$\mathrm{C}=0$ stretch	α, β-unsaturated esters
1715 (s)	$\mathrm{C}=0$ stretch	ketones, saturated aliphatic
1710-1665 (s)	$\mathrm{C}=\mathrm{O}$ stretch	α, β-unsaturated aldehydes, ketones
1680-1640 (m)	$-\mathrm{C}=\mathrm{C}-$ stretch	alkenes
1650-1580 (m)	$\mathrm{N}-\mathrm{H}$ bend	1° amines
1600-1585 (m)	$\mathrm{C}-\mathrm{C}$ stretch (in-ring)	aromatics
1550-1475 (s)	$\mathrm{N}-\mathrm{O}$ asymmetric stretch	nitro compounds
1500-1400 (m)	$\mathrm{C}-\mathrm{C}$ stretch (in-ring)	aromatics
1470-1450 (m)	C-H bend	alkanes
1370-1350 (m)	C-H rock	alkanes
1360-1290 (m)	N-O symmetric stretch	nitro compounds
1335-1250 (s)	$\mathrm{C}-\mathrm{N}$ stretch	aromatic amines
1320-1000 (s)	$\mathrm{C}-\mathrm{O}$ stretch	alcohols, carboxylic acids, esters, ethers
1300-1150 (m)	$\mathrm{C}-\mathrm{H}$ wag ($-\mathrm{CH}_{2} \mathrm{X}$)	alkyl halides
1250-1020 (m)	$\mathrm{C}-\mathrm{N}$ stretch	aliphatic amines
1000-650 (s)	= $\mathrm{C}-\mathrm{H}$ bend	alkenes
950-910 (m)	O-H bend	carboxylic acids
910-665 (s, b)	$\mathrm{N}-\mathrm{H}$ wag	$1^{\circ}, 2^{\circ}$ amines
900-675 (s)	C-H "оор"	aromatics
850-550 (m)	C-Cl stretch	alkyl halides
725-720 (m)	C-H rock	alkanes
700-610 (b, s)	$-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}: \mathrm{C}-\mathrm{H}$ bend	alkynes
690-515 (m)	C-Br stretch	alkyl halides

