UNIVERSITY OF SWAZILAND

ŝ,

ŧ

FINAL EXAMINATION 2015/2016

TITLE OF PAPER:	ADVANCED INORGANIC CHEMISTRY
COURSE NUMBER:	C401
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.
	· 予》 · · · · · · · · · · · · · · · · · ·

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) Determine the specified quantity:
 - (i) The metal-metal bond order consistent with the 18-electron rule for $[(\eta^5 C_5H_5)Mo(CO)_2]_2^{2^2}$.
 - (ii) The identity of the first row-transition metal in $[(\eta^5-C_5H_5)M(CO)_3]_2$ (assume a single M-M bond), an 18-electron molecule.
 - (iii) The expected charge on $[(\eta^5-C_5H_5)Fe(CO)_3]^z$ on the basis of the 18-electron rule. [3]
- (b) Explain why $V(CO)_6$ is easily reduced to the monoanion, $[V(CO)_6]^-$ [4]
- (c) Identify the following reactions by type and predict the products:
 - (i) $\operatorname{Re}_2(\operatorname{CO})_{10} + \operatorname{Na/Hg} \rightarrow$
 - (ii) $Rh(PPh_3)_3Br + Cl_2 \rightarrow$

- [4]
- (d) (i) Suggest a sequence of reactions for the preparation of Fe(CO)₃(diphos), given iron metal, CO, diphos (Ph₂P-CH₂-CH₂-PPh₂), and other reagents of your choice.
 - (ii) Propose a synthesis for $HMn(CO)_5$, starting with $Mn_2(CO)_{10}$ as the source of Mn and other reagents of your choice. [10]
- (e) Select the best choice in each of the following, and briefly justify the reason for your selection.
 - (i) Shortest C–O bond: Ni(CO)₄, $[Co(CO)_4]^-$, $[Fe(CO)_4]^{2-}$
 - (ii) Highest C–O stretching frequency: Ni(CO)₃(PF₃), Ni(CO)₃(PCl₃),

 $Ni(CO)_3(PMe_3)$ [4]

QUESTION TWO

(a) The reaction of chloroform with $Co_2(CO)_8$ yields a compound of formula $Co_3(CH)(CO)_9$. NMR and IR data indicate the presence of only terminal CO ligands and the presence of a CH group. Propose a structure consistent with the spectra and the correlation of cluster valence electron (CVE) count with structure.

[5]

[6]

[2]

- (b) Give organic fragments isolobal with each of the following: (i) $(\eta^5-C_5H_5)Ni$ (ii) $(\eta^6-C_6H_6)Cr(CO)_2$ (iii) $[Fe(CO)_2(PPh_3)]^-$ [3]
- (c) Use Wade's rules to predict the structures of the following:

(i) $B_5H_8^-$ (ii) $Os_5(CO)_{16}$

- (ii) $Os_6(CO)_{17}[P(OMe_3)]_3$
- (d) (i) Give a definition of a metal cluster.
 - (ii) What are the two broad classes of metal carbonyl clusters?
 - (iii) $M_3(CO)_{12}$ clusters (M = Ru and Os) are unreactive. Give <u>three</u> ways by which they can be converted into more reactive derivatives. [9]

(e) What are the formulas of the metal carbonyls that are isoelectronic with

(i)
$$Co(NO)_3$$

(ii) $Fe(CO)_2(NO)_2$?

QUESTION THREE

- (a) Explain with necessary diagrams the bonding in CO to transition metal atoms with emphasis on the σ -donor and π^* -acceptor functions of the ligand. [4]
- (b) The complex $[Rh(H)(CO)(PPh_3)_3]$ can be used in the catalytic synthesis of npentanal from an alkene having one less carbon atom.
 - Outline the main steps in the mechanism of this process indicating the reaction type of each step (such as oxidative addition) and identifying the catalytic species.
 - (ii) Increasing the concentration of phosphine in the phosphine-rhodium cycle slows the reaction rate. Explain. [5]
- (c) Using the most appropriate acid-base theory, identify the acids and bases in the following reactions:
 - (i) $SiO_2 + Na_2O = Na_2SiO_3$

(ii)
$$B(OR)_3 + NaH = Na[HB(OR)_3]$$

(iii) $Cl_3PO + Cl^- = Cl_4PO^-$ [6]

QUESTION FOUR

.

- (a) (i) Why is it difficult to separate lanthanide ions? A mixture of lanthanide metal ions was prepared containing Ce³⁺, Eu³⁺ (ii) and Yb^{3+} . To separate the ions, a portion of the solution of the ions was poured through a sulphonated polysterene ion-exchange resin. The column was then eluted with a dilute solution of H4EDTA adjusted to pH 8 with ammonia. (1) Which ion comes out first? Explain. Suggest another buffer solution that could be used to elute the ions (2)from the column. [9]
- (b) An empty, a half-filled and a completely filled 4*f* electronic level is often said to confer stability on the oxidation state of a lanthanide ion. Cite examples which bear out this statement. [3]

(c)	(i) Use Hund's rules to derive the ground state term of Nd^{3+} .			
	(ii)	Hence determine the magnetic moment, μ .	[6]	
(d)	What are the main sources of			
	(i)	Thorium, (Th)		
	(ii)	Uranium, (U)	[4]	
(e)	Work out the number of unpaired electrons in the ions			
	(i)	Gd ³⁺		
	(ii)	Tm ³⁺		
	(iii)	Lu^{2+}	[3]	

QUESTION FIVE

(a) Describe the main types of interhalogen compounds giving example		
	[6]	
(b)	Predict the products of the following reactions of interhalogens:	
	(i) $ClF + S \rightarrow$	

- (ii) $ClF_3 + SbF_5 \rightarrow$
- (iii) $IF_5 + CsF \rightarrow$ [3]
- (c) Given that 1.84 g of IF₃ reacts with 0.93 g of [(CH₃)₄N]F to form a product X:
 (i) identify X
 - (ii) Use VSEPR model to predict the shapes of
 - (1) IF₃
 - (2) the cation in \mathbf{X}
 - (3) the anion in \mathbf{X}

[8]

- (d) The interhalogen compound, I_2Cl_6 exists as a dimer in the solid state.
 - (i) Write a balanced equation for the preparation of this compound. [2]
 - (ii) I_2Cl_6 undergoes dissociation on warming to room temperature. Write the reaction for the dissociation process. [3]
- (e) Ligand substitution reactions on metal clusters are often found to occur by associative mechanisms, and it is postulated that these occur by initial breaking of an M-M bond, thereby providing an open coordination site for the incoming ligand. If the proposed mechanism is applicable, which would you expect to undergo the fastest exchange with added ¹³CO? $Co_4(CO)_{12}$ or $Ir_4(CO)_{12}$? Suggest an explanation. [3]

QUESTION SIX

١

£.

(a)	Indicate with sketches the structures of the following:			
	(i)	LiCH ₃		
	(ii)	$Hg(CH_3)_2$		
	(iii)	Al(CH ₃) ₃	[6]	
(b)	(i)	How is an alkylidenetriphenylphosphorane (Wittig reagent) made?	1	
	(ii)	What is it used for?	[4]	
(c)	Selec	t the best answer and give the basis for your selection.		
	(i)	Strongest acid: H_2O , H_2S , H_2Se or H_2Te		
	(ii)	Stronger base: NF_3 or NH_3	[4]	
(d)	Use t	he hard and soft acid base (HSAB) theory to predict which of the foot adducts should be the more stable:	ollowing	
	r 0	(i) $[Fe(NMe_3)_k]^{3+}$ or $[Fe(SbMe_3)_k]^{3+}$		
		(ii) Bel_2 or BeF_2	[4]	
(e)	(i)	Draw the Lewis diagrams for all the species involved in the reaction $2HSO_3F = H_2SO_3F^+ + SO_3F^-$		
	(ii)	Discuss this equilibrium		
		(1) in terms of the solvent-system definition of acids and bases	5.	
		(2) in terms of the Lewis definition of acids and bases.	[7]	