UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

.,•

There are six (6) questions. Each question carries 25 marks. Answer Question one (1) and any three (3) other questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 (25 MARKS)

a) Explain how the permanent dipole moment and the polarizability of a molecule arise

b) Write short notes to define the nature and role of enzymes in reaction kinetics. Your notes should include examples to illustrate your answer. [5]

[5]

- c) Using an equation of your choice, briefly explain the steady state approach. [4]
- d) What approximations underlie the Langmuir and BET isotherms [4]
- e) Why is the stoichiometry of a reaction generally not sufficient to determine the reaction order? When is it possible to infer the reaction order from stoichiometry? [3]
- f) Define the mean free path (λ). How does it vary with the number density, particle diameter and particle mean speed.
 [4]

QUESTION 2 (25 MARKS)

a) The standard potential of the cell $Pt(s) | H_2(g) | HBr(aq) | AgBr(s) | Ag(s)$ was measured over a range of temperatures, and the data was found to fit the following polynomial.

$$E_{cell}^{\Theta}/V = 0.07131 - 4.99 \times 10^{-4} (T/K - 298) - 3.45 \times 10^{-6} (T/K - 298)^2$$

- *i.* Evaluate the standard Gibbs energy, enthalpy and entropy at 25 °C. [9]
- b) Using the Nernst equation and the Debye-Huckel limiting law for a NaCl-electrolyte, derive the equation used to measure the standard potential when the molality approaches zero.

NB: $2\ln x = \ln x^2$, $\ln 10\log x = \ln x$

$$E_{cell} + \frac{2RT}{F} \ln b = E^{\Theta} + Cb^{1/2}$$
[8]

- c) Write the electrode half reactions and the overall cell reactions for the following.
 - *i*. $Pt(s)|Cl_2(g)|HCl(aq)||K_2CrO_4(aq)|Ag_2CrO_4(s)|Ag(s)|$
 - *ii.* $Cu(s)|Cu^{2+}||(Mn^{2+}(aq),H^{+}(aq)|MnO_{2}(s)|Pt(s)$ [8]

QUESTION 3 (25 MARKS)

- a) Define or briefly explain what the following terms mean in chemical kinetics
 - i. Collision cross section
 - ii. Cage effect
 - iii. Diffusion controlled reaction
 - iv. Activation energy
 - v. Kinetic salt effect [10]
- b) The diffusion coefficient of I in CCl₄ is estimated to be $4.2 \times 10^{-5} \text{ cm}^2 \text{s}^{-1}$ at 25 °C. Given that the radius of I is about 200pm, calculate the rate constant k_d for

 $I + I \rightarrow I_2$ at 25 °C.

c) For the gas phase reaction A + A \rightarrow A₂, the experimental rate constant has been fitted to the Arrhenius equation with pre exponential factor A = 4.07 x 10⁵ Lmol⁻¹s⁻¹ at 300K and the activation energy of 65.43 kJ/mol. Calculate the Δ^{\dagger} S, Δ^{\dagger} H and Δ^{\dagger} G for the reaction. [10]

QUESTION 4 (25 MARKS)

- a) When a mixture of H₂ and O₂ is irradiated with light of wavelength 253.7nm, no reaction is observed. When a small amount of mercury vapour is added to the mixture and then irradiated with 253.7 nm light, a rapid formation of water is observed. Given that the bond dissociation energies for O₂ and H₂ are 498 and 436 kJ/mol respectively, account for the above observation.
- b) The quantum yield is 2 for the photolysis of gaseous HI to I₂ and H₂ by light of 253 nm wavelength. Calculate the number of moles of HI that will be decomposed if 300 J of light of this wavelength is absorbed.
- c) An enzyme calalysed reaction conversion of substrate at 25 °C has Michaelis constant of 0.042 mol/L. the rate of reaction is 2.45 x 10-4 molL-1s-1 when the substrate concentration is 0.890 mol/L. What is the maximum velocity of this enzymolysis?

[5]

[5]

d) A possible mechanism for the reaction, $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$ in the presence of mercury vapour is

$$Hg + H_{2} \xrightarrow{k1} Hg + 2H \bullet$$

$$H \bullet + C_{2}H_{4} \xrightarrow{k2} \bullet C_{2}H_{5}$$

$$\bullet C_{2}H_{5} + H_{2} \xrightarrow{k3} C_{2}H_{6} + H \bullet$$

$$H \bullet + H \bullet \xrightarrow{k4} H_{2}$$

Determine the expression for the rate of formation of C_2H_6 in terms of the rate constants and cconcentrations of Hg, H_2 and C_2H_4 using the steady state approximation

[9]

QUESTION 5 (25 MARKS)

- a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics.
 [6]
- b) The mechanism of the decomposition of $2O_3(g) \rightarrow 3O_2(g)$ is
 - (1) $O_3 \leftrightarrow O2 + O$ k_1 and k'_1
 - $(2) O + O_3 \rightarrow 2O_2 \qquad \qquad k_2$

Find the expression of the rate law for the decomposition of ozone (O₃) using the preequilibrium Approach. [5]

c) An enzyme catalysed reaction, following the Michelis-Menten mechanism

 $E + S \leftrightarrow P + E$ with rate constants k_1 , k_1 and k_2 ,

has the rate law $\frac{d[P]}{dt} = \frac{k_2[S][E]_o}{K_M + [S]}$, where $K_M = \frac{k_1 + k_2}{k_1}$.

The following data relate to such a reaction

[S]/mol L-1	0.00125	0.0025	0.0050	0.020		
Rate/mol L ⁻¹ s ⁻¹	2.78 x 10 ⁻⁵	5.00 x 10 ⁻⁵	8.33 x 10 ⁻⁵	1.67 x 10 ⁻⁴		

Given that the enzyme concentration is 2.3 nM, calculate

- *i*. The maximum rate, v_{max}
- ii. The Michaeli's constant K_M

iii. k₂

iv. The catalytic efficiency

[14]

QUESTION 6 (25 MARKS)

- a) Distinguish between physisorption and chemisorption [8]
- b) A surface is half covered by a gas when the pressure is 1.0 atm. If the Langmuir isotherm is followed:
 - *i*. What is the value of the adsorption coefficient, α ? [4]
 - *ii.* What pressure would give 90% coverage? [2]
 - *iii.* What coverage is given by a pressure of 0.10 atm? [2]
- c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm,

 $\theta = kp^{\frac{1}{n}}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and **n**.

	[acid}mol/L	0.05	0.10	0.50	1.0	1.5					
	W _a /g	0.04	0.06	0.12	0.16	0.18					
	Wa is the mass adsorbed per unit mass of charcoal.										
THE	THE END										

Useful information

•

Standard potentials at 25 °C

Reduction half reaction	E ^O /V
$Ag^+ + e^- \rightarrow Ag$	+0.80
$Ag^{2+} + e^- \rightarrow Ag^+$	+1.98
$AgCl + e^- \rightarrow Ag + Cl^-$	+0.22
$AgBr + e^- \rightarrow Ag + Br^-$	+0.0713
$Hg_2Cl_2 + 2e \rightarrow 2Hg + 2Cl^2$	+0.2676
$Hg^{2+} + 2e^- \rightarrow Hg$	+0.86

ð,

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	.e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
· · ·		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	NA	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ, .	$4\pi X 10^{-7} J s^{2} C^{-2} m^{-1}$
	·	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{B} = e\hbar/2m_{e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_p = 4\pi \epsilon_p \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{\rm e} e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}e^{4}/8h^{3}c\varepsilon_{e}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

l cal = 1 eV =	4.184 joi 1.602 2 [.] :			1 erg 1 eV/n	nolecule	e	$ = 1 X 10^{-7} J = 96 485 kJ mol^{-1} $					
Prefixes	f p femto p 10 ⁻¹⁵ 1	pico .	n nano 10 ⁻⁹	micro	milli	c centi 10 ⁻²	deci					

• ••

PERIODIC TABLE OF ELEMENTS

	GROUPS														4			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	1	IIA`	IIIB	IVB	·VB	VIB	VIIB		VINB	·····	IB	IIB	AIII	IVA	VA	YIA	VIIA	VIIIA
· .	1.008							•										4.003
1	II								ar,					·			•	lle
	1													••••				2
• .	6.941	9.012	1				٤			•	Aton	ic mass —	10.811	12.011	14.007		18.998	20.180
2	Li	Be										mbol 📜		Ç	N	0	F	-Nc
•	3.	4									Ator	nic No. 🗌	s	6	7	8	9	10
	22.990	24.305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg			•	TRAP	SITIO	N EL.EN	TENTS				Al	Si	. P	S	Cl	Ar
	11	12				~~~~					· .		13	14	- 15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 -	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- In	Sn	Sb	Tc	I	Xe
	37	38 .	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Rc	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	_79	80 '	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)		•						
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		· ,					•	
	87	88	89	104	105	106	107.	108	109	110		·						
											•						,	
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97	
*La	nthanid	c Scrics	.	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		•		58	59	60	61	62	63	64	. 65	66	·67	68	69	70	71	
**	Actinide	Series		232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
				Th	Pn ·	U	Np	Pu	Am	Cm	Bk	Cf	Ēs	Fm	Md	No	Lr	
	•			90	91	92 ·	93	94	95	96	97	· 98	99	100	101	102	103	•

() indicates the mass number of the isotope with the longest half-life.