UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2015/2016

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

There are six (6) questions. Each question carries 25 marks. Answer Question one (1) and any three (3) other questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 (25 MARKS)

a) Explain how the permanent dipole moment and the polarizability of a molecule arise
b) Write short notes to define the nature and role of enzymes in reaction kinetics. Your notes should include examples to illustrate your answer.
c) Using an equation of your choice, briefly explain the steady state approach.
d) What approximations underlie the Langmuir and BET isotherms
e) Why is the stoichiometry of a reaction generally not sufficient to determine the reaction order? When is it possible to infer the reaction order from stoichiometry?
f) Define the mean free path (λ). How does it vary with the number density, particle diameter and particle mean speed.

QUESTION 2 (25 MARKS)

a) The standard potential of the cell $\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HBr}(\mathrm{aq})|\mathrm{AgBr}(\mathrm{s})| \mathrm{Ag}(\mathrm{s})$ was measured over a range of temperatures, and the data was found to fit the following polynomial.

$$
E_{\text {cell }}^{\ominus} / V=0.07131-4.99 \times 10^{-4}(T / K-298)-3.45 \times 10^{-6}(T / K-298)^{2}
$$

i. Evaluate the standard Gibbs energy, enthalpy and entropy at $25^{\circ} \mathrm{C}$.
b) Using the Nernst equation and the Debye-Huckel limiting law for a NaCl-electrolyte, derive the equation used to measure the standard potential when the molality approaches zero.
NB: $2 \ln x=\ln x^{2}, \ln 10 \log x=\ln x$

$$
\begin{equation*}
E_{\text {cell }}+\frac{2 R T}{F} \ln b=E^{\ominus}+C b^{1 / 2} \tag{8}
\end{equation*}
$$

c) Write the electrode half reactions and the overall cell reactions for the following.

$$
\begin{array}{ll}
\text { i. } & \left.\mathrm{Pt}(\mathrm{~s})\left|\mathrm{Cl}_{2}(\mathrm{~g})\right| \mathrm{HCl}_{(\mathrm{aq})}\right)\left|\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})\right| \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s}) \mid \mathrm{Ag}(\mathrm{~s}) \\
\text { ii. } & \mathrm{Cu}(\mathrm{~s})\left|\mathrm{Cu}^{2+}\right|\left|\mathrm{Mn}^{2+}(\mathrm{aq}), \mathrm{H}^{+}(\mathrm{aq})\right| \mathrm{MnO}_{2}(\mathrm{~s}) \mid \mathrm{Pt}(\mathrm{~s})
\end{array}
$$

QUESTION 3 (25 MARKS)

a) Define or briefly explain what the following terms mean in chemical kinetics
i. Collision cross section
ii. Cage effect
iii. Diffusion controlled reaction
iv. Activation energy
v. Kinetic salt effect
b) The diffusion coefficient of I in CCl_{4} is estimated to be $4.2 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. Given that the radius of I is about 200 pm , calculate the rate constant k_{d} for $\mathrm{I}+\mathrm{I} \rightarrow \mathrm{I}_{2}$ at $25^{\circ} \mathrm{C}$.
c) For the gas phase reaction $\mathrm{A}+\mathrm{A} \rightarrow \mathrm{A}_{2}$, the experimental rate constant has been fitted to the Arrhenius equation with pre exponential factor $A=4.07 \times 10^{5} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$ at 300 K and the activation energy of $65.43 \mathrm{~kJ} / \mathrm{mol}$. Calculate the $\Delta^{\dagger} \mathrm{S}, \Delta^{\dagger} \mathrm{H}$ and $\Delta^{\dagger} \mathrm{G}$ for the reaction.

OUESTION 4 (25 MARKS)

a) When a mixture of H_{2} and O_{2} is irradiated with light of wavelength 253.7 nm , no reaction is observed. When a small amount of mercury vapour is added to the mixture and then irradiated with 253.7 nm light, a rapid formation of water is observed. Given that the bond dissociation energies for O_{2} and H_{2} are 498 and $436 \mathrm{~kJ} / \mathrm{mol}$ respectively, account for the above observation.
b) The quantum yield is 2 for the photolysis of gaseous HI to I_{2} and H_{2} by light of 253 nm wavelength. Calculate the number of moles of HI that will be decomposed if 300 J of light of this wavelength is absorbed.
c) An enzyme calalysed reaction conversion of substrate at $25^{\circ} \mathrm{C}$ has Michaelis constant of $0.042 \mathrm{~mol} / \mathrm{L}$. the rate of reaction is $2.45 \times 10-4 \mathrm{molL}-1 \mathrm{~s}-1$ when the substrate concentration is $0.890 \mathrm{~mol} / \mathrm{L}$. What is the maximum velocity of this enzymolysis?
d) A possible mechanism for the reaction, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ in the presence of mercury vapour is

$$
\begin{aligned}
& \mathrm{Hg}+\mathrm{H}_{2} \xrightarrow{\mathrm{k}^{\longrightarrow}} \mathrm{Hg}+2 \mathrm{H} \bullet \\
& \mathrm{H} \bullet+\mathrm{C}_{2} \mathrm{H}_{4} \xrightarrow{\mathrm{k}_{2}} \mathrm{C}_{2} \mathrm{H}_{5} \\
& \bullet \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \xrightarrow{k_{3}} \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{H} \bullet \\
& \mathrm{H} \bullet+\mathrm{H} \bullet \xrightarrow{k_{4}} \mathrm{H}_{2}
\end{aligned}
$$

Determine the expression for the rate of formation of $\mathrm{C}_{2} \mathrm{H}_{6}$ in terms of the rate constants and cconcentrations of $\mathrm{Hg}, \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ using the steady state approximation

OUESTION 5 (25 MARKS)

a) Discuss the advantages of photochemical activation over thermal activation in chemical kinetics.
b) The mechanism of the decomposition of $2 \mathrm{O}_{3}(\mathrm{~g}) \rightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$ is
(1) $\mathrm{O}_{3} \leftrightarrow \mathrm{O} 2+\mathrm{O} \quad \mathrm{k}_{1}$ and k_{1}^{\prime}
(2) $\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$
k_{2}

Find the expression of the rate law for the decomposition of ozone $\left(\mathrm{O}_{3}\right)$ using the preequilibrium Approach.
c) An enzyme catalysed reaction, following the Michelis-Menten mechanism
$\mathrm{E}+\mathrm{S} \leftrightarrow \mathrm{P}+\mathrm{E}$ with rate constants $\mathrm{k}_{1}, k_{1}^{\prime}$ and k_{2},
has the rate law $\frac{d[P]}{d t}=\frac{k_{2}[S][E]_{o}}{K_{M}+[S]}$, where $K_{M}=\frac{k_{1}+k_{2}}{k_{1}}$.
The following data relate to such a reaction

$[\mathrm{S}] / \mathrm{mol} \mathrm{L-1}$	0.00125	0.0025	0.0050	0.020
Rate $/ \mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$	2.78×10^{-5}	5.00×10^{-5}	8.33×10^{-5}	1.67×10^{-4}

Given that the enzyme concentration is 2.3 nM , calculate
i. The maximum rate, $\mathrm{v}_{\text {max }}$
ii. The Michaeli's constant K_{M}
iii. k_{2}
iv. The catalytic efficiency

QUESTION 6 ($\mathbf{2 5}$ MARKS)

a) Distinguish between physisorption and chemisorption
b) A surface is half covered by a gas when the pressure is 1.0 atm . If the Langmuir isotherm is followed:
i. What is the value of the adsorption coefficient, α ?
ii. What pressure would give 90% coverage?
iii. What coverage is given by a pressure of 0.10 atm ?
c) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta=k p^{\frac{1}{n}}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants k and n.

[acid $\} \mathrm{mol} / \mathrm{L}$	0.05	0.10	0.50	1.0	1.5
$\mathrm{~W}_{\mathrm{a}} / \mathrm{g}$	0.04	0.06	0.12	0.16	0.18

THE END

Useful information

Standard potentials at $25^{\circ} \mathrm{C}$

Reduction half reaction	\mathbf{E} / \mathbf{V}
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	+0.80
$\mathrm{Ag}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}^{+}$	+1.98
$\mathrm{AgCl}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{Cl}^{-}$	+0.22
$\mathrm{AgBr}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{Br}^{-}$	+0.0713
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{e} \rightarrow 2 \mathrm{Hg}+2 \mathrm{Cl}^{-}$	+0.2676
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}$	+0.86

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{1} \mathrm{~m} \mathrm{~s}^{-1}$
- Elementary charge	.e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-31} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
		$\begin{aligned} & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \mathrm{X} 10 \mathrm{~L} \mathrm{Torr}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	\underline{i}	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$\dagger=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \mathrm{X} 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {s }}$	$9.10939 \times 10^{-34} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{\mathrm{s}}=1 / \mathrm{c}^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{\text {L2 }} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{\text {。 }}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{\frac{5}{2} \mathrm{C}^{-1} \mathrm{~m}^{-1} \cdot}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{0}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$.
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \hbar / m_{0} e^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{r}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{c}_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration $\quad . \quad$.		
of free fall	g	$9.80665 \mathrm{~m} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=4.184$ joules $(\mathrm{J}) \quad 1 \mathrm{erg} \quad \therefore \quad \stackrel{n}{=} \quad 1 \times 10^{-7} \mathrm{~J}$
$1 \mathrm{eV}=1.6022 \times 10^{-19} \mathrm{~J} \quad 1 \mathrm{eV} /$ molećule $=96485 \mathrm{~kJ} \mathrm{~mol} \mathrm{~m}^{-1}$
Prefixes f p o $\quad \mathrm{f}$ m c d $\quad \mathrm{m} . \mathrm{M} \quad \mathrm{G}$ $\begin{array}{lllllllllll}\text { femto } & \text { pico, nano micro milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega } & \text { giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

PERIODIC TABLE OF ELEMENTS

GROUPS																							
Periods	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18					
	1A	11^	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	YIA	VIIA	VIIIA					
1								\cdots			\cdots							$\begin{gathered} 4.003 \\ \mathrm{Hc} \\ 2 \\ \hline \end{gathered}$					
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 . \\ \hline \end{gathered}$	$\begin{gathered} 9.012 \\ \mathrm{Be} \\ 4 \end{gathered}$	Atomic mass Symbol Alomic No. TRANSITION ELEMENTS					Atomic mass Symbol Alomic No. ELEMENTS						$\begin{gathered} 12.011 \\ C \\ \dot{6} \end{gathered}$	$\begin{gathered} 14.007 \\ \mathrm{~N} \\ 7 \end{gathered}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ F \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ -\mathrm{Ne} \\ 10 \end{gathered}$					
3	$\begin{array}{\|c} 22.990 \\ \mathrm{Na} \\ 11 \end{array}$	$\begin{gathered} 24.305 \\ \mathrm{Mg} \\ 12 \end{gathered}$						$\begin{gathered} 26.982 \\ \text { A1 } \\ 1] \end{gathered}$	$\begin{gathered} 28.086 \\ S i \\ 14 \end{gathered}$	$\begin{gathered} 30.974 \\ \mathbf{P} \\ 15 \end{gathered}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{Cl} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \mathrm{Ar} \\ 18 \end{gathered}$										
4	$\begin{array}{\|c\|} \hline 39.098 \\ \mathrm{~K} \\ 19 \\ \hline \end{array}$	$\begin{gathered} 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ T i \\ 22 \\ \hline \end{gathered}$	$\begin{gathered} 50.942 \\ V \\ 23 \\ \hline \end{gathered}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{gathered}$						55.847 IF 26	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 58.69 \\ \mathrm{Ni} \\ 28 \\ \hline \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathrm{Zn} \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 69.723 \\ G a \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Se} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 83.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} \hline 85.468 \\ \mathrm{Rb} \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathrm{Zr} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \text { Mo } \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \mathrm{Tc} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101: 07 \\ R u \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 .1 \\ R h \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ \mathrm{Pd} \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \mathrm{Ag} \\ 47 \\ \hline \end{gathered}$	$\begin{gathered} 112: 41 \\ \mathrm{Cd} \\ 48 \\ \hline \end{gathered}$	14.82 $-1 n$ 49	$\begin{gathered} 118.71 \\ S n \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ \mathrm{Sb} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ \mathrm{Tc} \\ \mathrm{~S} 2 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ \text { I } \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} 131.29 \\ \mathrm{Xe} \\ 54 \\ \hline \end{gathered}$					
6	$\begin{gathered} 132.91 \\ \mathrm{Cs} \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 137.33 \\ \mathrm{Ba} \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} 138.91 \\ * 1 a \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ 1 \mathrm{ff} \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ T \pi \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ W \\ 74 \\ \hline \end{gathered}$	186.21 Rc 75	$\begin{gathered} 190.2 \\ \mathrm{Os} \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \mathrm{Ir} \\ 77 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 195.08 \\ \mathrm{Pt} \\ 78 \\ \hline \end{array}$	196.97 Au 79	$\begin{gathered} 200.59 \\ \mathrm{Hg} \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 204.38 \\ \mathrm{Tl} \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \\ \hline \end{gathered}$	$\begin{gathered} 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} (209) \\ \mathrm{Po}_{0} \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} \text { (210) } \\ \text { At } \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ 1 \mathrm{nn} \\ 86 \\ \hline \end{gathered}$					
7	$\begin{aligned} & 223 \\ & \mathrm{Fr} \\ & 87 \end{aligned}$	$\begin{gathered} 226.03 \\ \mathrm{Ra} \\ 88 \end{gathered}$	$\begin{gathered} (227) \\ * * A c \\ 89 \end{gathered}$	$\begin{gathered} (261) \\ \mathrm{Rf} \\ 104 \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & (263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{aligned} & (262) \\ & \text { Uns } \\ & 107 . \end{aligned}$	$\begin{aligned} & \text { (265) } \\ & \text { Uno } \\ & 108 \end{aligned}$	$\begin{aligned} & (266) \\ & \text { Une } \\ & 109 \end{aligned}$	$\begin{aligned} & \text { (267) } \\ & \text { Uun } \\ & 110 \end{aligned}$													
*Lanthanide Scrics				$\begin{gathered} 140.12 \\ \mathrm{Ce} \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \operatorname{Pr} \\ 59 \end{gathered}$	$\begin{gathered} 144.24 \\ \mathrm{Nd} \\ 60 \end{gathered}$	$\begin{gathered} (145) \\ \mathrm{Pm}_{61} \\ 61 \end{gathered}$	$\begin{gathered} 150.36 \\ \mathrm{Sm} \\ 62 \end{gathered}$	151.96 Eu 63	$\begin{gathered} 157.25 \\ G d \\ 64 \end{gathered}$	$\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ \mathrm{Dy} \\ 66 \end{gathered}$	$\begin{gathered} 164.93 \\ \mathrm{Ho} \\ .67 \end{gathered}$	$\begin{gathered} 167.26 \\ \mathrm{Er} \\ 68 \end{gathered}$	$\begin{gathered} 168.93 \\ \operatorname{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ Y b \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 71 \end{gathered}$						
**Actinide Scrics				$\begin{gathered} 232.04 \\ \text { Th } \\ 90 \\ \hline \end{gathered}$	$\begin{gathered} 231.04 \\ \mathrm{~Pa} \\ 91 \\ \hline \end{gathered}$	$\begin{gathered} 238.03 \\ U \\ 92 \end{gathered}$	$\begin{gathered} 237.05 \\ \mathrm{~Np} \\ 93 \end{gathered}$	$\begin{gathered} (244) \\ P_{u} \\ 94 \end{gathered}$	(243) Am 95	$\begin{gathered} (247) \\ \mathrm{Cm} \\ 96 \end{gathered}$	$\begin{gathered} (247) \\ B k \\ 97 \end{gathered}$	$\begin{gathered} \hline(251) \\ \text { Cf } \\ 98 \end{gathered}$	$\begin{gathered} (252) \\ \text { שs } \\ 99 \end{gathered}$	$\begin{aligned} & (257) \\ & \mathrm{Fm} \\ & 100 \end{aligned}$	(258) Md 101	$\begin{gathered} (259) \\ \text { No } \\ 102 \end{gathered}$	$\begin{gathered} (260) \\ \mathrm{Lr} \\ 103 \\ \hline \end{gathered}$.					

() indicates the mass number of the isolope wilh the longest half-life.

