UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2015/2016

TITLE OF PAPER:
COURSE NUMBER:

TIME ALLOWED:

INSTRUCTIONS:

INTRODUCTORY CHEMISTRY

CHE151

THREE (3) HOURS

THERE ARE TWO SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY THREE QUESTIONS EROM SECTION B.

SECTION A IS WORTH 25 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

THE ANSWER SHEET FOR SECTION A IS ATTACHED TO THE QUESTION PAPER. DETATCH THE ANSWER SHEET FROM THE QUESTION PAPER AND EILL IN ALL THE INFORMATION REOUIRED

For Section A, record the letter corresponding to the correct answer on the Section A answer sheet which is attached

AT THE END OF THE EXAM, BEFORE YOU LEAVE PLACE THE ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B. DO NOT FORGET

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN TḤIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A: ANSWER ALL THE QUESTIONS

1. Isopropyl alcohol, commonly known as rubbing alcohol, boils at $82.4^{\circ} \mathrm{C}$. What is the boiling point in kelvins?
A. 387.6 K
B. 355.6 K
C. 323.6 K
D. 190.8 K
E. -190.8 K
2. Select the answer with the correct number of decimal places for the following sum:
$13.914 \mathrm{~cm}+243.1 \mathrm{~cm}+12.00460 \mathrm{~cm}=$
A. 269.01860 cm
B. 269.0186 cm
C. 269.019 cm
D. 269.02 cm
E. 269.0 cm
3. Which of the following correctly expresses 0.000007913 g in scientific notation?
A. $7.913 \times 10^{6} \mathrm{~g}$
B. $7.913 \times 10^{5} \mathrm{~g}$
C. $7.913 \times 10^{-5} \mathrm{~g}$
D. $7.913 \times 10^{-6} \mathrm{~g}$
E. $7.913 \times 10^{-9} \mathrm{~g}$
4. Silicon, which makes up about 25% of Earth's crust by mass, is used widely in the modern electronics industry. It has three naturally occurring isotopes, ${ }^{28} \mathrm{Si},{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$. Calculate the atomic mass of silicon.

Isotope		Isotopic Mass (amu)	
		Abundance \%	
${ }^{28} \mathrm{Si}$		27.976927	
${ }^{29} \mathrm{Si}$	28.976495	4.67	
${ }^{39} \mathrm{Si}$	29.973770	3.10	

A. 29.2252 amu
B. 28.9757 amu
C. 28.7260 amu
D. 28.0855 amu
E. 27.9801 amu
5. Which of the following compounds is covalent?
A. CaCl_{2}
B. MgO
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. $\mathrm{Cs}_{2} \mathrm{~S}$
E. PCl_{3}
6. The compound, BaO , absorbs water and carbon dioxide readily and is used to dry gases and organic solvents. What is its name?
A. barium oxide
B. barium(II) oxide
C. barium monoxide
D. baric oxide
E. barium peroxide
7. What is the formula for magnesium sulfide?
A. MgS
B. MgS_{2}
C. $\mathrm{Mg}_{2} \mathrm{~S}$
D. $\mathrm{Mg}_{2} \mathrm{~S}_{3}$
E. MgSO_{4}
8. Sulfur trioxide can react with atmospheric water vapor to form sulfuric acid that falls as acid rain. Calculate the mass in grams of 3.65×10^{20} molecules of SO_{3}.
A. $6.06 \times 10^{-4} \mathrm{~g}$
B. $2.91 \times 10^{-2} \mathrm{~g}$
C. $4.85 \times 10^{-2} \mathrm{~g}$
D. 20.6 g
E. 1650 g
9. A compound containing chbromium and silicon contains 73.52 mass percent chromium. Determine its empirical formula.
A. CrSi_{3}
B. $\mathrm{Cr}_{2} \mathrm{Si}_{3}$
C. $\mathrm{Cr}_{3} \mathrm{Si}$
D. $\mathrm{Cr}_{3} \mathrm{Si}_{2}$
E. $\mathrm{Cr}_{2} \mathrm{~S}$
10. Balance the following equation for the combustion of benzene:
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
A. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(g)+6 \mathrm{CO}_{2}(g)$
B. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+6 \mathrm{CO}_{2}(\mathrm{~g})$
C. $2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+12 \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{H}_{2} \mathrm{O}(g)+6 \mathrm{CO}_{2}(g)$
E. $2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+9 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+12 \mathrm{CO}_{2}(g)$
11. Aluminum reacts with oxygen to produce aluminum oxide which can be used as an adsorbent, desiccant or catalyst for organic reactions.
$4 \mathrm{Al}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(s)$
A mixture of 82.49 g of aluminum ($\mathcal{M}=26.98 \mathrm{~g} / \mathrm{mol})$ and 117.65 g of oxygen $(\mathcal{M}=32.00$ $\mathrm{g} / \mathrm{mol}$) is allowed to react. Identify the limiting reactant and determine the mass of the excess reactant present in the vessel when the reaction is complete.
A. Oxygen is the limiting reactant; 19.81 g of aluminum remain.
B. Oxygen is the limiting reactant; 35.16 g of aluminum remain.
C. Aluminum is the limiting reactant; 16.70 g of oxygen remain.
D. Aluminum is the limiting reactant; 35.16 g of oxygen remain.
E. Aluminum is the limiting reactant; 44.24 g of oxygen remain.
12. In the following reaction, what ions, if any, are spectator ions?

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{NaCl}(a q) \rightarrow \mathrm{PbCl}_{2}(s)+2 \mathrm{NaNO}_{3}(a q)
$$

A. $\mathrm{Pb}^{2+}(a q), \mathrm{Cl}^{-}(a q)$
B. $\mathrm{Na}^{+}(a q), \mathrm{NO}_{3}^{-}(a q)$
C. $\mathrm{Pb}^{2+}(a q), \mathrm{NO}_{3}(a q)$
D. $\mathrm{Na}^{+}(a q), \mathrm{Cl}^{-}(a q)$
E. There are no spectator ions
13. Select the correct name and chemical formula for the precipitate that forms when the following reactants are mixed.
$\mathrm{CuCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{CO}_{3}(a q) \rightarrow$
A. copper(I) carbonate, $\mathrm{Cu}_{2} \mathrm{CO}_{3}$
B. copper(II) carbonate, $\mathrm{Cu}_{2} \mathrm{CO}_{3}$
C. copper(I) carbonate, CuCO_{3}
D. copper(II) carbonate, CuCO_{3}
E. sodium chloride, NaCl
14. Select the net ionic equation for the reaction between lithium hydroxide and hydrobromic acid.
$\mathrm{LiOH}(a q)+\mathrm{HBr}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{LiBr}(a q)$
A. $\mathrm{LiOH}(a q) \rightarrow \mathrm{Li}^{+}(a q)+\mathrm{OH}^{-}(a q)$
B. $\mathrm{HBr}(a q) \rightarrow \mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q)$
C. $\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
D. $\mathrm{Li}^{+}(a q)+\mathrm{Br}^{-}(a q) \rightarrow \mathrm{LiBr}(a q)$
E. $\mathrm{Li}^{+}(a q)+\mathrm{OH}^{-}(a q)+\mathrm{H}^{+}(a q)+\mathrm{Br}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{LiBr}(a q)$
15. A standard solution of 0.243 M NaOH was used to determine the concentration of a hydrochloric acid solution. If 46.33 mL of NaOH is needed to neutralize 10.00 mL of the acid, what is the molar concentration of the acid?
A. 0.0524 M
B. 0.888 M
C. 1.13 M
D. 2.26 M
E. 2.43 M
16. Select the arrangement of electromagnetic radiation which starts with the lowest wavelength and increases to greatest wavelength.
A. radio, infrared, ultraviolet, gamma rays
B. radio, ultraviolet, infrared, gamma rays
C. gamma rays, radio, ultraviolet, infrared
D. gamma rays, infrared, radio, ultraviolet
E. gamma rays, ultraviolet, infrared, radio
17. According to the Bohr theory of the hydrogen atom, the minimum energy (in J) needed to ionize a hydrogen atom from the $n=2$ state is
A. $2.18 \times 10^{-18} \mathrm{~J}$
B. $1.64 \times 10^{-18} \mathrm{~J}$
C. $5.45 \times 10^{-19} \mathrm{~J}$
D. $3.03 \times 10^{-19} \mathrm{~J}$
E. None of these choices is correct.
18. Which of the following is a correct set of quantum numbers for an electron in a $3 d$ orbital?
A. $n=3, l=0, m_{l}=-1$
B. $n=3, l=1, m_{l}=+3$
C. $n=3, l=2, m_{l}=3$
D. $n=3, l=3, m_{l}=+2$
E. $n=3, l=2, m_{l}=-2$
19. In the quantum mechanical treatment of the hydrogen atom, which one of the following combinations of quantum numbers is not allowed?

	n	l		m_{l}
	3	0	\ddots	0
b.	3	1		-1
c.	3	2		2
d.	3	2		-1
e.	3	3		2

A. a
B. b
C. c
D. d
E. e
20. The electronic structure $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{8}$ refers to the ground state of
A. Kr
B. Ni
C. Fe
D. Pd
E. None of these choices is correct.
21. Which of the following elements has the greatest atomic radius?
A. Li
B. Ne
C. Rb
D. Sr
E. Xe
22. Select the element with the least metallic character.
A. Sn
B. Sr
C. Tl
D. Ge
E. Ga
23. Select the correct formula for a compound formed from calcium and chlorine.
A. CaCl
B. CaCl_{2}
C. $\mathrm{Ca}_{2} \mathrm{Cl}$
D. $\mathrm{Ca}_{2} \mathrm{Cl}_{2}$
E. CaCl_{3}
24. Phosphoryl iodide is used in the preparation of organophosphorus derivatives and phosphate esters. Select the Lewis' structure for POI_{3} which minimizes formal charges.
a.
d.
e.

b.
c.

A. a
B. b
C. c
D. d
E. e
25. In which one of the following species is the central atom (the first atom in the formula) likely to violate the octet rule?
A. $\mathrm{BF}_{4}{ }^{-}$
B. NO_{5}
C. SiCl_{4}
D. NH_{3}
E. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$

SECTION B: ANSWER ANY THREE QUESTIONS

Q.1. a) Write the following numbers in scientific notation:
i) $\quad 281.0$
ii) 0.00380
iii) 4279.8
iv) 58200.9
[2]
b) Write the following numbers in standard notation. Use a terminal decimal point when needed.
i) $\quad 5.55 \times 10^{3}$
ii) $\quad 1.0070 \times 10^{4}$
iii) $\quad 8.85 \times 10^{-7}$
iv) 3.004×10^{-4}
c) Argon has three naturally occurring isotopes, ${ }^{36} \mathrm{Ar},{ }^{38} \mathrm{Ar}$ and ${ }^{40} \mathrm{Ar}$.
i) What is the mass number of each?
ii) How many protons, neutrons and electrons are present in each?
d) What monatomic ions do the following elements form? In each case, give the Lewis symbol of the atom and the corresponding ion.
i) Iodine;
ii) Calcium;
iii) selenium
e) Name the following anions and give the names and formulas of the acids derived from them:
i) Br^{-}
ii) $\mathrm{ClO}_{3}{ }^{-}$
iii) CN^{-}
iv) $\mathrm{SO}_{4}{ }^{2-}$
Q.2. (a) A dry-cleaning solvent ($\mathrm{MW}=146.99 \mathrm{~g} / \mathrm{mol}$) that contains C, H and Cl is suspected to be a cancer-causing agent. When a $0.250-\mathrm{g}$ sample was studied by combustion analysis, 0.451 g of CO_{2} and 0.0617 g of $\mathrm{H}_{2} \mathrm{O}$ formed. Find the molecular formula of the substance.
(b) Thermite is a mixture of iron(III) oxide and aluminium powders that was once used to weld railroad tracks. It undergoes a spectacular reaction to yield solid aluminum oxide and molten iron.

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})
$$

(i) How many grams of iron form when 135 g of aluminium react?
(ii) How many atoms of aluminium react for every 1.00 g of aluminium oxide formed?
Q.3. (a) How many grams of solid aluminium sulphide can be prepared by the reaction of 10.0 g of aluminium and 15.0 g of sulphur? How much of the nonlimitting reactant is in excess? The balanced reaction is as follows:

$$
\begin{equation*}
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{~S}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{~S}_{3}(\mathrm{~s}) \tag{8}
\end{equation*}
$$

(b) Marble (calcium carbonate) reacts with hydrochloric acid solution to form calcium chloride solution, water, and carbon dioxide. What is the percentage yield of carbon dioxide if 3.5 g of the gas is collected when 10.0 g of marble reacts with excess acid? The reaction equation is,

$$
\begin{equation*}
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \tag{5}
\end{equation*}
$$

(c) To prepare a fertilizer, a technician dilutes a stock solution of sulphuric acid by adding $25.0 \mathrm{~m}^{3}$ of 7.50 M acid to enough water to make 500.0 mL of a dilute solution. What is the mass (in g) of sulphuric acid per milliliter of the diluted solution?
(d) Consider a 1.5 M aqueous solution of lead(II) acetate. When 267 mL reacts with 125 mL of 3.40 M sodium chloride, how many grams of solid lead(II) chloride can form? The required reaction equation is,

$$
\begin{equation*}
\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{CH}_{3} \mathrm{COONa}(\mathrm{aq}) \tag{7}
\end{equation*}
$$

Q.4. (a) What values of the angular momentum (l) and magnetic (m_{l}) quantum numbers are allowed for a principal quantum number (n) of 4 ? How many orbitals exist for $\mathrm{n}=4$?
Q.4. (c) Rank the ions in each set in order of increasing size:
(i) $\mathrm{Se}^{2-}, \mathrm{Rb}^{+}, \mathrm{Br}^{-}$
(ii) $\mathrm{O}^{2-}, \mathrm{F}^{2}, \mathrm{~N}^{3-}$
(iii) $\mathrm{T}^{2,}, \mathrm{Cs}^{+}, \mathrm{I}^{-}$
(iv) $\mathrm{Sr}^{2+}, \mathrm{Cs}^{+}, \mathrm{Ba}^{2+}$
Q.4. (d) Give condensed electron configurations, and partial orbital diagrams showing valence electrons for the following species:
(i) Sn^{2+};
(iii) Se^{2-}
Q.4. (e) For each of the following, give the Lewis structure and the hybridization of the central atom:
(i) $\quad \mathrm{SF}_{4}$
(ii) XeF_{2}

PERIODIC TABLE OF THE ELEMENTS

 GROUPS

- Lanthanide series
* Actinide serfes

$\begin{gathered} 140.115 \\ C_{58} \\ \hline \end{gathered}$	$\underset{59}{140.908} \underset{\mathbf{P}_{\mathbf{r}}}{ }$	144.24 Nd 60	$\begin{aligned} & (145) \\ & \mathrm{P}_{61} \end{aligned}$	$\stackrel{S}{62}_{150.36}$	$\begin{gathered} 151.96 \\ \mathbf{E u}_{63} \\ \hline \end{gathered}$	157.25 Gd 64	$\begin{gathered} 158.925 \\ \mathbf{T b} \end{gathered}$	${ }_{66}^{162.50}$	164.930 $\mathbf{H 0}$	$\underset{68}{167.26}$	168.934 Tm 69	$\mathbf{Y B b}_{70}^{173.04}$	174.967 Lu 71
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	$\mathbf{P a}$	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

Numbers below the symbot of the element indicales the alomic
numbers. Alomic masses. above the symbol of the element. are
based on the assigned relative atomic mass of ${ }^{2} \mathrm{C}=$ exacly 12
() indicales the mass number of the isolope with the longest
hall-lie.

SOURCE: International Union of Pure and Applied Chemisiry, L. Mills. ed., Quantitex, Uniss, and Symbols in Physical Chemistry. Blackwell Scientific Publicaions, Boston, 1988, pp 86-98.

Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$
SI Unit Prefixes

p	n	μ	m	c.	d	k	M	G
pico-	nano-	micro-	milli:	centi-	deci-	kilo-	mega-	giga-
10^{-12}	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10^{-1}	10^{3}	10^{6}	10^{9}

Conversions and Relationships

CHE151 FINAL EXAM ANSWER SHEET FOR SECTIONA
Student ID \#
Degree Program (BSc, BEd, etc):
Date: \qquad

Question No.	Letter corresponding to the correct answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
23	
24	
25	

