UNIVERSITY OF SWAZILAND

RE-SIT EXAMINATION - 2016, MAY

TITLE OF PAPER : Introductory Chemistry II

COURSE NUMBER : CHE 152

TIME : Three Hours

INSTRUCTIONS
 :

1. Answer all questions in Section \mathbf{A} (Total 40 marks)
2. Answer any two questions in Section B (each question is 20 marks)

NB: Non-programmable electronic calculators may be used
A data sheet, a periodic table and answer sheet (for Section A) are attached

Useful data and equations:
$1 \mathrm{~atm}=760$ Torr $=760 \mathrm{mmHg}$
$1 \mathrm{~atm}=101325 \mathrm{~Pa}$
Arrhenius equation: $k=A e^{-E_{a} / R T} \quad$ or $\quad \ln k=\ln A-\frac{E_{a}}{R T}$
Van der Walls equation: $\quad P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}$

This Examination Paper Contains Six Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief invigigilator.

1. The pressure of hydrogen sulfide gas in a container is $35,650 \mathrm{~Pa}$. What is this pressure in torr?
A. 46.91 torr
B. $\quad 267.4$ torr
C. $\quad 351.8$ torr
D. 3612 torr
E. 27,090 torr
2. "The pressure of an ideal gas is inversely proportional to its volume at constant temperature and number of moles" is a statement of \qquad Law.
A. Charles'
B. Boyle's
D. Avogadro's
E. Gay-Lussac's
C. Amontons
3. A sample of an ideal gas has its volume doubled while its temperature remains constant. If the original pressure was 100 torr, what is the new pressure?
A. 10 torr
B. 50 torr
D. 200 torr
E. $\quad 1000$ torr
4. A sample container of carbon monoxide occupies a volume of 435 mL at a pressure of 785 torr and a temperature of 298 K . What would its temperature be if the volume were changed to 265 mL at a pressure of 785 torr?
A. 182 K
5. 298 K
C. $\quad 387 \mathrm{~K}$
D. 489 K
E. $\quad 538 \mathrm{~K}$
6. A sample of methane gas, $\mathrm{CH}_{4}(g)$, occupies a volume of 60.3 L at a pressure of 469 torr and a temperature of $29.3^{\circ} \mathrm{C}$. What would be its temperature at a pressure of 243 torr and volume of 60.3 L ?
A. $-116.5^{\circ} \mathrm{C}$
7. $\quad 15.2^{\circ} \mathrm{C}$
C. $\quad 15.5^{\circ} \mathrm{C}$
D. $57.7^{\circ} \mathrm{C}$
E. $\quad 310.6^{\circ} \mathrm{C}$
8. Assuming ideal behaviour, what is the density of argon gas at STP, in g/L?
A. $0.0176 \mathrm{~g} / \mathrm{L}$
B. $\quad 0.0250 \mathrm{~g} / \mathrm{L}$
C. $\quad 0.0561 \mathrm{~g} / \mathrm{L}$
D. $1.78 \mathrm{~g} / \mathrm{L}$
E. $\quad 181 . \mathrm{g} / \mathrm{L}$
9. Lithium oxide is an effective absorber of carbon dioxide and can be used to purify air in confined areas such as space vehicles. What volume of carbon dioxide can be absorbed by 1.00 kg of lithium oxide at $25^{\circ} \mathrm{C}$ and 1.00 atm ?
$\mathrm{Li}_{2} \mathrm{O}(a q)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}(s)$
A. 687 mL
B. $\quad 819 \mathrm{~mL}$
C. $\quad 687 \mathrm{~L}$
D. 819 L
E. 22.4 L
10. Which of the following gases effuses most rapidly?
A. nitrogen
B. oxygen
D. ammonia
E. carbon monoxide
C. hydrogen chloride
11. Use the van der Waals equation for real gases to calculate the pressure exerted by 1.00 mole of ammonia at $27^{\circ} \mathrm{C}$ in a $750-\mathrm{mL}$ container. $\left(a=4.17!^{2} \cdot \mathrm{~atm} / \mathrm{mol}{ }^{2}, b=0.0371 \mathrm{~L} / \mathrm{mol}\right)$
A. 23.2 atm
12. $\quad 27.1 \mathrm{~atm}$
C. $\quad 32.8 \mathrm{~atm}$
D. 42.0 atm
E. 32.8 torr
13. At very high pressures ($\sim 1000 \mathrm{~atm}$), the measured pressure exerted by real gases is greater than that predicted by the ideal gas equation. This is mainly because
A. such high pressures cannot be accurately measured.
B. real gases will condense to form liquids at 1000 atm pressure.
C. gas phase collisions prevent molecules from colliding with the walls of the container.
D. of attractive intermolecular forces between gas molecules.
E. the volume occupied by the gas molecules themselves becomes significant.
14. A system receives 575 J of heat and delivers 425 J of work. Calculate the change in the internal energy, ΔE, of the system.
A. -150 J
B. 150 J
C. -1000 J
D. 1000 J
E. 575 J
15. Calculate q when 28.6 g of water is heated from $22.0^{\circ} \mathrm{C}$ to $78.3^{\circ} \mathrm{C}$.
A. 0.385 kJ
B. $\quad 1.61 \mathrm{~kJ}$
C. $\quad 6.74 \mathrm{~kJ}$
D. 9.37 kJ
E. $\quad 1.61 \times 10^{3} \mathrm{~kJ}$
16. Ethylene glycol, used as a coolant in automotive engines, has a specific heat capacity of $2.42 \mathrm{~J} /(\mathrm{g} \cdot \mathrm{K})$. Calculate q when 3.65 kg of ethylene glycol is cooled from $132^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
A. -1900 kJ
B. $\quad-420 \mathrm{~kJ}$
C. $\quad-99 \mathrm{~kJ}$
D. -0.42 kJ
E. $\quad-4.2 \times 10^{-5} \mathrm{~kJ}$
17. Calcium hydroxide, which reacts with carbon dioxide to form calcium carbonate, was used by the ancient Romans as mortar in stone structures. The reaction for this process is

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-69.1 \mathrm{~kJ}
$$

What is the enthalpy change if 3.8 mol of calcium carbonate is formed?
A. -18 kJ
B. $\quad-69 \mathrm{~kJ}$
C. $\quad .73 \mathrm{~kJ}$
D. -260 kJ
E. None of these choices is correct.
15. Use Hess's Law to calculate the enthalpy change for the reaction
$\mathrm{WO}_{3}(s)+3 \mathrm{H}_{2}(g) \rightarrow \mathrm{W}(s)+3 \mathrm{H}_{2} \mathrm{O}(g)$
from the following data:
$2 \mathrm{~W}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{WO}_{3}(\mathrm{~s})$

$$
\Delta H=-1685.4 \mathrm{~kJ}
$$

$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta H=-477.84 \mathrm{~kJ}
$$

A. 125.9 kJ
B. $\quad 252.9 \mathrm{~kJ}$
C. $\quad 364.9 \mathrm{~kJ}$
D. 1207.6 kJ
E. None of these choices is correct.
16. Which one of the following equations represents the formation reaction of $\mathrm{CH}_{3} \mathrm{OH}(I)$?
A. $\mathrm{C}(g)+2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
B. $\quad \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
C. $\mathrm{C}($ graphite $)+4 \mathrm{H}(g)+\mathrm{O}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(1)$
D. $\quad \mathrm{C}($ diamond $)+4 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
E. C(graphite) $+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
17. An important step in the synthes s of nitric acid is the conversion of ammonia to nitric oxide. $\Delta H_{f}^{\circ}\left[\mathrm{NH}_{3}(\mathrm{~g})\right]$ $=-45.9 \mathrm{~kJ} / \mathrm{mol} ; \Delta H^{\circ} ;\left[\mathrm{NO}^{\prime}(g)\right]=90.3 \mathrm{~kJ} / \mathrm{nol} ; \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2} \mathrm{O}(g)\right]=-241.8 \mathrm{~kJ} / \mathrm{mol}$ $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Calculate $\Delta H^{\circ}{ }_{\text {rx }}$ for this reaction.
A. -906.0 kJ
B. $\quad-197.4 \mathrm{~kJ}$
C. $\quad-105.6 \mathrm{~kJ}$
D. 197.4 kJ
E. $\quad 906.0 \mathrm{~kJ}$
18. Select the correct name for the following compound.
A. 2,4,5-tripropylheptane
B. 6-methyl-3,4-dipropyinonane
C. 4-ethyl-5,7-dipropyloctane
D. 5-ethyl-2,4-dipropyloctane
E. 4-ethyl-7-methyl-5-propyldecane

19. Select the correct name for the following compound.
A. ortho-ethylheptylcyclopentane
B. meta-ethylheptylcyclopentane
C. 1-ethyl-2-heptylcyclopentane
D. ethylcyclopentylheptane
E. ortho-ethylheptylbenzene

20. Select the correct name for the following compound.
A. cis-2,3-dimethyl-4-hexene
B. trans-2,3-dimethyl-4-hexene
C. cis-4,5-dimethyl-2-hexene
D. trans-4,5-dimethyl-2-hexene
E. trans-4,5-dimethyl-2-heptene

21. Select the correct name for the following compound.
A. 4-ethyl-1,1,5-trimethyl-2-heptyne
B. 4,5-diethyl-1,1-dimethyl-2-heptyne
C. 5-ethyl-2,6-dimethyl-3-octene
D. 3-ethyl-3,7-dimethyl-5-octyne
E. 5-ethyl-2,6-dimethyl-3-octyne

22. Select the correct name for the following compound.
A. ortho-butylethylbenzene
B. meta-butylethylbenzene
C. para-butylethylbenzene
D. 1-butyl-2-ethylcyclohexene
E. 1-butyl-2-ethylcyclohexane

23. Testosterone is a male hormone. Identify the functional group circled.
A. aldehyde
B. ketone
C. alcohol
D. ester
E. carboxyl

24. Select the correct name for the following compound.
A. 3-ethyl-2,3-dimethyl-1-propanol
B. 2,3,4-trimethyl-1-butanol
C. 2,3-dimethyl-1-pentanol
D. 3,4-dimethyl-5-pentanol

E. 2,3-dimethyi-1-pentanal
25. Identify the functional group circled.
A. aldehyde
B. ketone
C. alcohol
D. ester

E. carboxylic acid
26. Putrescine is produced during the decay and protein breakdown of meats and is responsible for some of the odour found in them. Identify the functional group circled.
A. aldehyde
B. ketone
C. amide
D. nitrile

E. amine
27. Anethole, a derivative of anise, is used in flavouring and as perfume in soap and toothpaste. Identify the functional group circled.
A. aldehyde
B. ketone
C. alcohol
D. ester
E. ether
28. Consider the following reaction
$8 \mathrm{~A}(\mathrm{~g})+5 \mathrm{~B}(\mathrm{~g}) \rightarrow 8 \mathrm{C}(\mathrm{g})+6 \mathrm{D}(\mathrm{g})$
If $[C]$ is increasing at the rate of $4.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$, at what rate is [B] changing?
A. $\quad-0.40 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
B. $\quad-2.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
C. $\quad-4.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
D. $-6.4 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
E. None of these choices is correct, since its rate of change must be positive.
29. For the reaction

$$
3 \mathrm{~A}(g)+2 \mathrm{~B}(g) \rightarrow 2 \mathrm{C}(g)+2 \mathrm{D}(g)
$$

the following data was collected at constant temperature. Determine the correct rate law for this reaction.

Trial	Initial [A]	Initial [B]	Initial Rate
	($\mathrm{mol} / \mathrm{L}$)	($\mathrm{mol} / \mathrm{L}$)	$(\mathrm{mol} /(\mathrm{L} \cdot \mathrm{min})$)
1	0.200	0.100	6.00×10^{-2}
2	0.100	0.100	1.50×10^{-2}
3	0.200	0.200	1.20×10^{-1}
4	0.300	0.200	2.70×10^{-1}

A. \quad Rate $=k[\mathrm{~A}][\mathrm{B}]$
B. \quad Rate $=k[A][B]^{2}$
C. \quad Rate $=k[A]^{3}[B]^{2}$
D. Rate $=k[A]^{1.5}[B]$
E. \quad Rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$
30. When the reaction $A \rightarrow B+C$ is studied, a plot $1 /[A]$, vs. time gives a straight line with a positive slope. What is the order of the reaction?
A. zero
3. first
C. second
D. third
E. More information is needed to determine the order.
31. Which of the following sets of units could be appropriate for a zero-order rate constant?
A. s^{-1}
B. $\quad \mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
C. $\quad \mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
D. $\mathrm{L}^{3} \mathrm{~mol}^{-3} \mathrm{~s}^{-1}$
E. $\quad \mathrm{mo}^{1} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
32. A study of the decomposition reaction $3 R S_{2} \rightarrow 3 R+6 S$ yields the following initial rate data
[RS $\left.{ }_{2}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$
0.150 Rate (mol/(L-s)
0.0394
$0.250 \quad 0.109$
0.350
0.214
0.500
0.438

What is the rate constant for the reaction?
A. $0.0103 \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
B. $\quad 0.263 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
C. $\quad 0.571 \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
D. $\quad 1.17 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
E. $\quad 1.75 \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
33. When a chemical system is at equilibrium,
A. the concentrations of the reactents are equal to the concentrations of the products.
B. the concentrations of the reactants and products have reached constant values.
C. the forward and reverse reactions have stopped.
D. the reaction quotient, Q, has reached a maximum.
E. the reaction quotient, Q, has reached a minimum.
34. Write the mass-action expression, Q_{c}, for the following chemical reaction. $\mathrm{NO}(g)+1 / 2 \mathrm{Br}_{2}(g)=\mathrm{NOBr}(\mathrm{g})$
A. $\frac{[\mathrm{NOBr}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]}$ $\left[\mathrm{NO}^{2}\right]^{2}\left[\mathrm{Br}_{2}\right]$
D. $[\mathrm{NOBr}]^{2}$
$\begin{array}{ll} & \frac{[\mathrm{NOBr}]}{[\mathrm{NO}]-5\left[\mathrm{Br} r_{2}\right]} \\ \text { B. } & \frac{[\mathrm{NOBr}]}{[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]^{0 S}}\end{array}$
C. $\frac{\left.\left[\mathrm{NO}_{1 \mathrm{Br}}\right]_{2}\right]^{05}}{[\mathrm{NOBr}]}$
35. What is the mass-action expression, Q_{c}, for the following chemical reaction? $\mathrm{PbO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Rightarrow \mathrm{Pb}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
$\left[\mathrm{CO}_{2}\right]$
A. $[\mathrm{CO}]$
$[\mathrm{Pb}]\left[\mathrm{CO}_{2}\right]$
D. $[\mathrm{CO}]$
B. $\frac{[\mathrm{CO}]}{\left[\mathrm{CO}_{2}\right]}$
$[\mathrm{Pb}]\left[\mathrm{CO}_{2}\right]$
B. $\quad\left[\mathrm{CO}_{2}\right]$
C. $\quad[\mathrm{PbO}][\mathrm{CO}]$
E. None of these expressions is correct.
36. At $500^{\circ} \mathrm{C}$ the equilibrium constant, K_{p}, is 4.00×10^{-4} for the equilibrium:
$2 \mathrm{HCN}(g)=\mathrm{H}_{2}(g)+\mathrm{C}_{2} \mathrm{~N}_{2}(g)$
What is K_{p} for the following reaction?
$\mathrm{H}_{2}(g)+\mathrm{C}_{2} \mathrm{~N}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCN}(g)$
A. 2.00×10^{-4}
3. -4.00×10^{-4}
C. $\quad 1.25 \times 10^{3}$
D. 2.50×10^{3}
E. $\quad 4.00 \times 10^{4}$
37. About half of the sodium carbonate produced is used in making glass products because it lowers the melting point of sand, the major component of glass. When sodium carbonate is added to water it hydrolyses according to the following reactions.
$\mathrm{CO}_{3}{ }^{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{HCO}_{3}(a q)+\mathrm{OH}^{-}(a q) \quad \mathrm{K}_{1}$
$\mathrm{HCO}_{3}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+\mathrm{OH}(a q) \quad \mathrm{K}_{2}$
These can be combined to yield
$\mathrm{CO}_{3}{ }^{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(I) \Longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{OH}^{\circ}(a \mathrm{aq}) \quad \mathrm{K}_{3}$
What is the value of K_{3} ?
A. $K_{1} \times K_{2}$
B. $\quad K_{1} \div K_{2}$
C. $K_{1}+K_{2}$
D. $K_{1}-K_{2}$
E. $\quad\left(K_{1} K_{2}\right)^{2}$
38. Consider the following two equilibria and their respective equilibrium constants:
(1) $\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g)=\mathrm{NO}_{2}(\mathrm{~g})$
(2) $2 \mathrm{NO}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Which one of the following is the correct relationship between the equilibrium constants K_{1} and K_{2} ?
A. $K_{2}=2 / K_{1}$
B. $\quad K_{2}=\left(1 / K_{1}\right)^{2}$
D. $K_{2}=1 /\left(2 K_{1}\right)$
E. $\quad K_{2}=1 /\left(2 K_{1}\right)^{2}$
39. The equilibrium constant, K_{p}, for the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
at $986^{\circ} \mathrm{C}$ is 0.63 . A rigid cylinder at that temperature contains 1.2 atm of carbon monoxide, 0.20 atm of water vapor, 0.30 atm of carbon dioxide, and 0.27 atm of hydrogen. Is the system at equilibrium?
A. Yes.
B. No, the forward reaction must proceed to establish equilibrium.
C. No, the reverse reaction must proceed to establish equilibrium.
D. The volume of the container must be krown before deciding.
E. The starting concentrations of all slibstances must be known before deciding.
40. A mixture 0.500 mole of carbon monoxide and 0.400 mole of bromine was placed into a rigid 1.00-L container and the system was allowed to come to equilibrium. The equilibrium concentration of COBr_{2} was 0.233 M . What is the value of K_{c} for this reaction? $\mathrm{CO}(g)+\mathrm{Br}_{2}(g) \rightleftharpoons \mathrm{COBr}_{2}(g)$
A. 5.23
B. $\quad 1.22$
D. 0.858
E. C.191
C. $\quad 1.165$
41. The reaction system
$\mathrm{POCl}_{3}(g)=\mathrm{POCl}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
is at equilibrium. Which of the following statements describes the behaviour of the system if the partial pressure of chlorine is reduced by 50% ?
A. POCl_{3} will be consumed as equilibrium is established.
B. POCl will be consumed as equilibrium is established.
C. Chlorine will be consumed as equilibrium is established.
D. The partial pressure of POCl will decrease while the partial pressure Cl_{2} increases as equilibrium is established.
E. The volume will have to decrease before equilibrium can be re-established.
42. The reaction system
$\mathrm{CS}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
is at equilibrium. Which of the following statements describes the behaviour of the system if the partial pressure of carbon disulfide is reduced?
A. As equilibrium is re-established, the partial pressure of carbon disulfide increases.
B. As equilibrium is re-established, the partial pressure of hydrogen decreases.
C. As equilibrium is re-established, the partial pressure of methane, CH_{4}, increases.
D. As equilibrium is re-established, the partia! pressures of hydrogen and hydrogen sulfide decrease.
E. As equilibrium is re-established, all the partial pressures will increase.
43. The substance NaNO_{3} is considered
A. a weak Arrhenius acid.
B. a weak Arrhenius base.
C. a strong Arrhenius anid.
D. a strong Arrhenius base.
E. a neutra! compound.
44. What is the pH of a 0.20 MHC solution?
A. <0
B. $\quad 0.70$
C. $\quad 1.61$
D. 12.39
E. $\quad: 3.30$
45. What is the pH of a 0.050 MLiOH solution?
A. <1.0
E. $\quad 1.30$
C. $\quad 3.00$
D. 11.00
E. 12.70
46. What is the $\left[\mathrm{OH}^{-}\right]$for a solution at $25^{\circ} \mathrm{C}$ that has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.35 \times 10^{-3} \mathrm{M}$?
A. $4.26 \times 10^{-5} \mathrm{M}$
B. $\quad 2.35 \times 10^{-11} \mathrm{M}$
C. $\quad 4.26 \times 10^{-12} \mathrm{M}$
D. $2.35 \times 10^{-17} \mathrm{M}$
E. Ncne of these choices is correct.
47. Select the pair of substances in which an acid is listed followed by its conjugate base.
A. $\mathrm{H}^{+}, \mathrm{HCl}$
B. $\quad \mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$
C. $\quad \mathrm{HPO}_{4}{ }^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$
D. $\mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}$
z. $\quad \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$
48. Butyric acid is responsible for the odour in rancid butter. A solution of 0.25 M butyric acid has a pH of 2.71. What is the k_{a} for the acid?
A. 0.36
3. $\quad 2.4 \times 10^{2}$
C. $\quad 7.8 \times 10^{-3}$
D. 1.5×10^{-5}
E. Nore of these choices is correct.
49. Aqueous solutions of phosphoric acid and sodium nitrite are combined, and the following equilibrium is established.
$\mathrm{H}_{3} \mathrm{PC}_{4}(a q)+\mathrm{NO}_{2}(a q)=\mathrm{H}_{2} \mathrm{PO}_{4}(a q)+4 \mathrm{HO}_{2}(a q)$
The equilibrium constant K_{s} for this reacion is greater than one. Based on this information, which of the following statements is correct?
A. Phosphoric acid is a weaker acid than nitrous acid.
B. Nitrous acid is a weaker acid than water.
C. The nitrite anion is a weaker base than the dihydrogen phosphate anion.
D. The dihydrogen phosphate anion is a stronger acid than nitrous acid.
E. Phosphoric acid is a stronger acid than nitrous acid.
50. Which one of the following pairs is not a conjugate acid-base pair?
A. $\mathrm{H}_{2} \mathrm{O} / \mathrm{OH}^{-}$
B. $\quad \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{HO}_{2}{ }^{-}$
C. $\mathrm{OH} / \mathrm{O}^{2-}$
D. $\mathrm{H}_{2} \mathrm{PO}_{4} / \mathrm{HPO}_{4}{ }^{2-}$
E. $\quad \mathrm{HCl} / \mathrm{H}^{+}$

Section B

Question 1

a) (i) Name any six classes of organic compounds.
(ii) Give the functional group and a named example for each of the classes of compounds named in part (i) above.
b) Write the structural formulas for all the constitutional isomers that have the following molecular formula.
i. $\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$
ii. $\quad \mathrm{C}_{3} \mathrm{H}_{2} \mathrm{Cl}$
iii. $\quad \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$
c) Expand the following bond line representations to show all the atoms including all the carbons and hydrogens.
(6)
i.

ii.

Question 2

a) Nitrous oxide can be formed by thermal decomposition of ammonium nitrate.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

What mass of ammonium nitrate would be required to produce 115 L of $\mathrm{N}_{2} \mathrm{O}$ at 2800 Torr and $42^{\circ} \mathrm{C}$
b) (i) State Dalton's law of partial pressures.
(2)
(ii) At $25^{\circ} \mathrm{C}, 0.300$ moles of $\mathrm{CH}_{4(\mathrm{~g})}, 0.200$ mole of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.400 mole of $\mathrm{N}_{2(\mathrm{~g})}$ are contained in a 10.0 L flask. Evaluate the partial pressure (in atm), of each of the components of the gaseous mixture in the flask, and the overall pressure in the flask.
(iii) Suppose the temperature of the flask above is raised from $25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$, evaluate the ratio of the total pressures in the flask at the two temperatures.
(iv) Calculate the volume of 0.65 mole of an ideal gas at 499 Torr and $102^{\circ} \mathrm{C}$
(NB: use $R=0.0821$ L.atm. mol ${ }^{-1} K^{-1}$)

Question 3

a) For the standard enthalphy of formation of a substance, ΔH°;
i. Define and state its S.I. units
ii. Illustrate it with as example without giving its actual value
iii. What is its value for an element in its thermochemical standard state?
b) What does Hess's Law state?
c) Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH 4 at 298 K :

$\mathrm{SiH}_{4}(\mathrm{~g})$	$2 \mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{SiO}_{2}(\mathrm{~g})$	$2 \mathrm{H}_{2} \mathrm{O}$ (I)
Substance	$\mathrm{SiH} 4(\mathrm{~g})$	$\mathrm{SiO}_{2}(\mathrm{~g})$	$2 \mathrm{H}_{2} \mathrm{O}$ (I)
$\Delta H^{\circ} \mathrm{f}(\mathrm{KJ} / \mathrm{mol})$	+34.0	-910.9	-285.8

d) From the following equations and their corresponding standard enthalpy changes, calculate the $\Delta H^{\circ}{ }^{\circ} \times n$, for the following reaction at 298 K .

Given:
$\Delta H^{\circ}(\mathrm{KJ})$

$\mathrm{C}(\mathrm{s})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	$>$	$\mathrm{CO}_{2}(\mathrm{~g})$			-393.5
$\mathrm{H}_{2}(\mathrm{~g})$	+	$1 / 2 \mathrm{O}_{2}(\mathrm{~g})$	\rightarrow	$\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$			-285.8
$\mathrm{CO}_{2}(\mathrm{~g})$	+	$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	\longrightarrow	$\mathrm{CH}_{4}(\mathrm{~g})$	$+$	$2 \mathrm{O}_{2}(\mathrm{~g})$	+890.3

e) Given the following reaction:
$2 \mathrm{Ba}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{BaO}(\mathrm{s}) \quad \Delta \mathrm{H}^{\circ}=-1107.0 \mathrm{KJ}$

How many KJ of heat are released when:
i. $\quad 4.62 \mathrm{~g}$ of $\mathrm{BaO}(\mathrm{s})$ is produced
ii. $\quad 13.94 \mathrm{~g}$ of $\mathrm{Ba}(\mathrm{s})$ reacts completely with oxygen to form $\mathrm{BaO}(\mathrm{s})$?
f) A solution is made by mixing 15.3 mL of 0.25 M HCl and 17.0 mL of 0.33 M NaOH . Calculate the pH of this solution.

UNIVERSITY OF SWAZILAND
Department of Chemistry

Atomic Number

