UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS

ACADEMIC YEAR 2017/2018

TITLE OF PAPER:	INORGANIC CHEMISTRY
COURSE NUMBER:	C301
TIME ALLOWED:	THREE (3) HOURS
INSTRUCTIONS:	THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

THE FOLLOWING HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER:

- * Periodic Table of the Elements
- * Table of Universal Constants
- * Table of Hard and Soft Acids and Bases
- * Tanabe-Sugano diagrams for octahedral complexes
- \diamond Character tables for C_{2v} and D_{3h} point groups

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

1

"Marks will be awarded for method, clearly labelled diagrams, organization and presentation of thoughts in clear and concise language"

Question One

- a) Give the IUPAC name for each of the following:
 - i) $Na_2[Cd(CN)_4]$
 - ii) $[Cr(NH_3)_6][Cr(CN)_6]$
 - iii) $[Co(NH_3)_4(H_2O)Br]Br$
- b) Give the formula of each of the following:
 - i) Sodium pentacyanonitrosylferrate(II) dihydrate
 - ii) Potassium pentachloronitridoosmate(IV)
 - iii) Tetraammineaquacobalt(III)-µ-cyanobromotetracyanocobaltate(III)
- c) Briefly discuss the observed trends in the stability of oxidation states across the periods from left to right and down the groups of the transition metal elements. Use examples to illustrate your answer.

[6]

[6]

d) What is the *chelate effect*? Give two ways of explaining how the chelate effect leads to greater stability of complexes.

[7]

[4]

Question Two

- a) Sketch the structures of all possible isomers that may arise from the complexes given below. If appropriate, distinguish delta from lambda isomer(s).
 - i) [Ni(SCH₂CH₂NH₂)₂], square planar ii) [Co(en)₃]³⁺ [9]
- b) For each of the following complexes, give the oxidation state of the metal and its d^N configuration.
 - i) $[Mn(CN)_6]^{4-}$ ii) $[Cr(acac)_3]$ [4]

c) What is the "hole formalism"? Give two examples to illustrate your answer.

d) Explain the origins of LMCT absorptions in the electronic spectra of d-block metal complexes. Give two examples to illustrate your answer. [8]

[6]

ι']

Question Three

- a) For each of the complexes given below, determine the oxidation number and electron configuration, d^N, of the transition metal ion.
 - i) $Mg[MoO_4]$ ii) $[Fe(CO)_4]^{2}$
 - $(1) \quad [1e(CO)_4]$
- b) Write balanced chemical equations for
 - i) Reaction of TiCl₄ with water
 - ii) Air oxidation of Fe^{3+}
 - iii) Reaction of CrO₃ with potassium hydroxide.
 - iv) Addition I- to aqueous F^{3+}

[8]

[6]

 ~ 1

c) A student in the year 1895 prepared three chromium compounds all of which corresponded to the same formula of CrCl₃.6H₂O. When each of the compounds is dissolved in water, the number of Cl⁻ ions released are as indicated below:

Complex: colour	Free Cl ⁻ ions in solution per
	Formula Unit
A: Violet	3
B: Light green	2
C: Dark green	1

- i) Write the formulas of these compounds
- ii) Suggest a method (involving wet chemistry) for confirming the number of Cl⁻ ions in the outer coordination sphere per formula unit of each complex.

[11]

Question Four

For each of the following pairs of species, indicate which member of the pair a) is more acidic. Explain each of your answers.

i) VO₂ or CoO₂ ii) CrO₃ or WO₃ iii) FeO or Fe₂O₃ [6]

- b) In order to separate gold from solid impurities, the ore is treated with a sodium cyanide (NaCN) solution in the presence of air to dissolve the gold by forming a soluble complex.
 - Write a balanced chemical equation that depicts the formation i) of the complex.
 - ii) Give the geometry of the complex

[6]

- c) Predict the *spin-only* magnetic moment of each of the following octahedral complexes. In each case use a suitable CF (d-orbital) splitting diagram to illustrate how the spin quantum number (S) is obtained.
 - $[Fe(CN)_{6}]^{3-}$ $[FeF_{6}]^{3-}$ i)
 - iii)
- [7] Assume that the trans effect increases in the order $NH_3 < CI < NO_2 < PR_3$. d) Suggest the structures of the products arising from the reactions of $[PtCl_4]^{2-1}$ with the ligands given below. In each case the structures of the products and sequences of reactions should be clearly shown.
 - i) Two equivalents of NH₃
 - ii) One equivalent of PEt₃ followed by one equivalent of NO₂.

[6]

Ouestion Five

a) Consider formation constants for the following reactions (at 298K):

Reaction	Reaction Equation	Formation
No.		Constant
1.	$Ag^+ + 2NH_3 \rightleftharpoons [Ag(NH_3)_2]^+$	$K_1 = 1.5 \times 10^7$
2.	$Ag^+ + 2CN^- \rightleftharpoons [Ag(CN)_2]^-$	$K_2 = 1.0 \times 10^{21}$
3.	$\left[\operatorname{Ag}(\operatorname{NH}_3)_2\right]^+ + 2\operatorname{CN}^- \rightleftharpoons \left[\operatorname{Ag}(\operatorname{CN})_2\right]^- + 2\operatorname{NH}_3$	К3

i) Write the expressions for the equilibrium constant K₁, K₂ and K₃ in terms of concentrations of the appropriate species.

- ii) Calculate the value for K₃
- Comment on the relative sizes of the equilibrium constants K_1 and K_2 . iii)

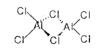
b) Overall stability constants for $[Au(CN)_2]^-$ and $[Pd(CN)_4]^{2-}$ are $\log\beta_2=39$ and $\log\beta_4=62.3$, respectively. Write reaction equations that describe the processes to which these constants refer. Then write the expressions to define β_2 and β_4 (in terms of concentrations of appropriate species).

[6]

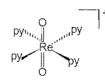
- c) Predict whether the equilibrium for the following reactions is expected to lie more on the right hand side or more on the left hand side. Explain each of your answers.
 - i) $CdI_2 + CaF_2 \rightleftharpoons CdF_2 + CaI_2$
 - ii) $[CuI_4]^{2^-} + [CuCl_4]^{3^-} \rightleftharpoons [CuCl_4]^{2^-} + [CuI_4]^{3^-}$
 - iii) $CH_3Hg^+ + HCN \rightleftharpoons CH_3HgCN + H^+$

[6]

- d) The extent of crystal field splitting is often determined from optical spectra.
 - i) Given the wavelength (λ) of maximum absorption, find the crystal field splitting energy (Δo), in kJ/mol, for each of the following complex ions:

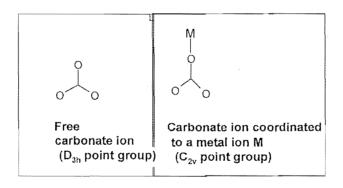

COMPLEX ION	λ (nm) for Δ_0
$[Cr(H_2O)_6]^{3+}$	562
$\left[\operatorname{Cr}(\operatorname{CN})_{6}\right]^{3}$	381
$\left[\text{CrCl}_{6} \right]^{3-}$	735
$[Cr(NH_3)_6]^{3+}$	462
$[Ir(NH_3)_6]^{3+}$	244
$[Fe(H_2O)_6]^{2+}$	966
$[Fe(H_2O)_6]^{3+}$	730
$[Co(NH_3)_6]^{3+}$	405
$[Rh(NH_3)_6]^{3+}$	295

- ii) Construct a spectrochemical series for the ligands in the Cr complexes
- iii) Use the Fe data to state how oxidation state affects Δ_o
- iv) Use the Co, Rh and Ir data to state how period number affects Δ_0 .

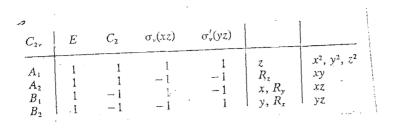

[8]

a) With the help of the flow-chart which is provided, determine the point group for each of the following:

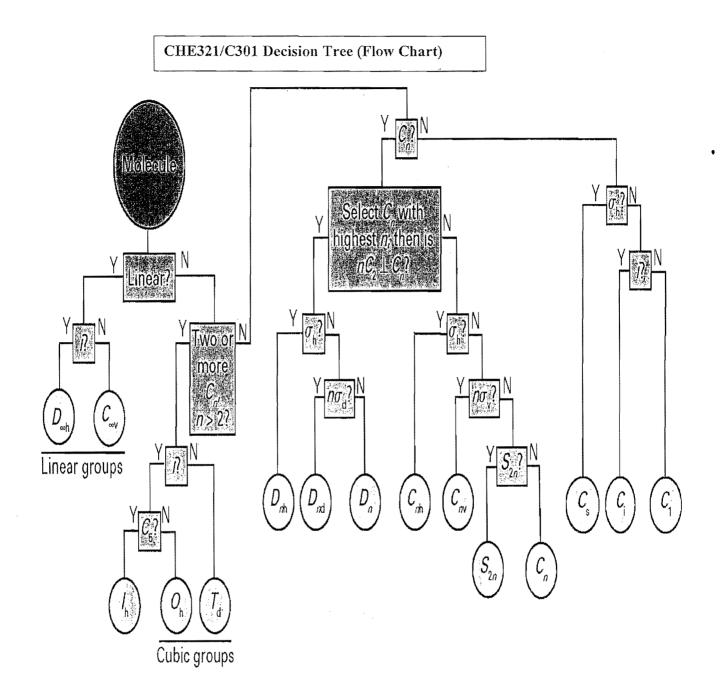
i) Al_2Cl_6



ii) $Trans-[Re(O)_2(py)_4]^+$


[6]

- b) The carbonate ion, CO₃²⁻, can serve as a ligand. When it does so, the symmetry is lowered from D_{3h} (for the uncoordinated ion), to C_{2v} (for the monodentate ligand or bidentate ligand). Thus infrared spectroscopy makes it possible to distinguish coordinated carbonate from uncoordinated carbonate. Using internal coordinates, r_i, determine the symmetries and number of C-O stretching IR active and Raman active bands for
 - i) Uncoordinated carbonate
 - ii) Monodentate carbonate, M-O-CO₂, where M= metal center


[19]

C301

D _{3h}	Ε	2C3	3C2 ·	σ_h	2S3	3σ,		
A'1	1	1	1	1	1		$ \begin{array}{c} R_z \\ (x, y) \end{array} $	$x^{2} + y^{2}, z^{2}$ $(x^{2} - y^{2}, xy)$
$\begin{array}{c} A_2'\\ E'\\ A_1''\\ A_1''\end{array}$	2 1 1	-1 1 1	0 1 -1	-1 -1	-1 -1 -1	-1 1 0	7	(<i>xz</i> , <i>yz</i>)
A"2 E"	2	<u>s</u> −1	0	2	1			

D _{3h} (6m ²)	E	2 <i>C</i> ₃	3 <i>C</i> ₂	σ_{h} .	2S3	3ở _y		h=12
A ₁	1	1	1	1]	1 .		$x^2 + y^2$, z^2
Az	1	1	-1	. 1	1	-1	Rz	κ.
E '	2	-1	0	. 2	-1	: 0	(x, y)	(x^2-y^2, xy)
A ₁	1	1	1	-1`	-1	-1		
A2	1.	1,	1	· }	-1	t ·	Ζ.	
Ε″	2	1	0	-2	. 1	0	(R_x, R_y)	(zx, yz)

× '

The flow-chart (Decision tree) used for assigning point groups

-

CHE 322/1301

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	IIA	IIIB	IVB	٧B	VIB	VIIB -		VIII		IB	IIВ	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1	,													•			4.003 He 2
2	6.941 Li 3	9.012 Be 4				۰.							10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.180 Ne 10
3	22.990 Na 11	${\mathop{\rm Mg}\limits_{{}^{12}}}^{{}^{24,305}}$			TF	ANSI	TION	ELEM	ENTS	•.			26.982 Al 13	28.0855 Si .14	30.9738 P . 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	^{39.0983} K 19	40.078 Ca 20	44.956 Sc 21	^{47.88} Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	${\mathop{Ga}\limits_{{31}}^{{69.723}}}$	$G_{32}^{72.61}$	74.922 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85,468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta 73	183.85 W 74	186.207 Re . 75	190.2 OS 76	192.22 Ir 77	195.08 Pt 78	196.967 Au 79	200,59 Hg 80	204.383 T I 81	207.2 Pb 82	208.980 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	Uno 108	(266) Une 109					\$4.	•~			
* Lanthanid	le series			140.115 Ce 58	140.908 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.925 Tb 65	${\overset{162.50}{\mathbf{Dy}}}_{66}$	164.930 Ho 67	167.26 Er 68	168.934 Tm 69	173.04 Yb 70	174.967 Lu 71	
** Actinide				232.038 Th 90	231.036 Pa 91	238.029 U 92	237.048 Np 93	(244) Pu 94	(243) Am 95	(247) Cm 96	(247) Bk 97	(251) Cf 98	(252) Es 99	(257) Fm 100	(258) Md 101	(259) No 102	(260) Lr 103	

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ^{12}C = exactly 12; () indicates the mass number of the isotope with the longest half-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

C301 /CHE322 TABLES

Hard bases	Borderline bases	Soft bases
		Н-
F-, (Cl-)	Br-	I
H ₂ O, OH-, O ²⁻		H ₂ S, HS ⁻ , S ²⁻
ROH, RO ⁻ , R ₂ O, CH ₃ COO ⁻		RSH, RS ⁻ , R ₂ S
NO_3^-, CIO_4^-	NO_{2}^{-}, N_{3}^{-}	SCN-, CN-, RNC, C
CO_{1}^{2-} , SO_{4}^{2-} , PO_{4}^{3-}	SO_3^{2-}	$S_2O_3^{2-}$
NH_3 , RNH_2 , N_2H_4	$C_6H_5NH_2$, C_5H_5N , N_2	R_3P , (RO) $_3P$, R_3As C ₃ H ₄ , C ₆ H ₆

SOURCE: Adapted from R. G. Pearson, J. Chem. Educ., 1968, 45, 581.

TABLE 6-10 Hard and soft acids

Hard acids	Borderline acids	Soft acids
H ⁺ , Li ⁺ , Na ⁺ , K ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺	Co(CN) ³⁻ , Pd ²⁺ , Pt ²⁺ , Pt ⁴⁺
BC_{3} , BCl_{3} , $B(OR)_{2}$ Al^{3+} , $Al(CH_{3})_{3}$, $AlCl_{3}$, AlH_{3}	B(CH ₃),	BH ₃ , TI+, TI(CH ₃) ₃
$C_{1}^{3+}, G_{2}^{3+}, I_{1}^{3+}, L_{2}^{3+}, C_{1}^{3+}, C_{1}^{3+}, C_{1}^{3+}, C_{1}^{3+}, C_{1}^{3+}$	GaH3 Rh ³⁺ , Ir ³⁺ , Ru ³⁺ , Os ²⁺	Ga(CH ₃) ₃ , GaCl ₃ , GaBr ₃ , Gal Cu ⁺ , Ag ⁺ , Au ⁺ , Cd ²⁺ , Hg ⁺ Hg ²⁺ , CH ₂ Hg ⁺
CO ₂ , RCO ⁺ , CH ₃ Sn ¹⁺ , (CH ₃) ₂ Sn ²⁺ N ³⁺ , RPO ₂ ⁺ , ROPO ₂ ⁺ , As ³⁺ SO ₃ , RSO ₂ ⁺ , ROSO ₂ ⁺	R ₃ C ⁺ , C ₆ H ₅ ⁺ , Sn ²⁺ , Pb ²⁺ NO ⁺ , Sb ³⁺ , Bi ³⁺ SO ₂	CH_2 , carbenes
Ions with oxidation states of 4 or higher HX (hydrogen-bonding molecules)		 Br₂, I₂ Metals with zero oxidation oxidation state π acceptors: trinitrobenzene, choroanil, quinones, tetracyanoethylene, etc.

SOURCE: Adapted from R. G. Pearson, J. Chem. Educ., 1968, 45, 581.

PHYSICAL CONSTANTS	Speed of light in a vacuum	C ₀	2.99792458 x 10 ⁸ m ⁻ s ⁻¹
- .	Permittivity of a vacuum	ϵ_0	8.854187816 x 10 ⁻¹² F m ⁻¹
		$4\pi\epsilon_0$	$1.11264 \times 10^{-10} \text{ c}^2 \text{ N}^{-1} \text{ m}^{-2}$
	Planck constant	-	
<u>.</u>		h	6.6260755(40) x 10 ⁻³⁴ J s
•	Elementary charge	e	1.60217733(49) x 10 ⁻¹⁹ C
	Avogadro constant	N_{A}	6.0221367(36) x 10 ²³ mol ³
	Boltzmann constant	k	1.380658(12) x 10 ⁻²³ J K ⁻¹
	Gas constant	R	8.314510(70) J K ⁻¹ mol ⁻¹
	Bohr radius	a_0	5.29177249(24) x 10 ⁻¹¹ m
	Rydberg constant	R _{ff}	1.0973731534; /x10 ⁷ m ⁻
		• 4	(infinite nuclear mass)
		✓ R _H	$1.09677759(30 \times 10^7 \text{ m}^4)$
		·	(proton nuclear mass)
	Bohr magneton	$\mu_{ m B}$	9.2740154(31) x 10 ⁻²⁴ J T
		π	3.14159265359
	Faraday constant	F	9.6485309(29)x10 ⁴ Cmol ⁻
	Atomic mass unit	$m_{\rm u}$	1.6605402(10) x 10 ⁻²⁷ kg
	Mass of the electron	m	9.1093897(54) x 10 ⁻³¹ kg
·		<u> </u>	or
x		,	$5.48579903(13) \ge 10^{-4} m_{\rm u}$
	Mass of the proton	mp	$1.007276470(12) m_{\mu}$
	Mass of the neutron	m _n	$1.008664904(14) m_{\rm u}$
	Mass of the deuteron	$m_{\rm d}$	$2.013553214(24) m_{\mu}$
	Mass of the triton	m_{t}	3.01550071(4) m
	Mass of the α -particle	m_{a}	4.001506170(50) m _n