# UNIVERSITY OF SWAZILAND 

MAIN EXAMINATION 2017/2018

| TITLE OF PAPER: | PHYSICAL CHEMISTRY |
| :--- | :--- |
| COURSE NUMBER: | C302 |
| TIME: | THREE (3) HOURS |

## INSTRUCTIONS:

There are Seven (7) questions. Each question carries 25 marks. You are required to answer any four (4) questions.
NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

## QUESTION 1 (25 MARKS)

a) Explain how Einstein's introduction of quantization of energy accounted for the pr operties of heat capacity at low temperatures
b) In an $\bar{x}$-ray photoelectron experiment, a photon of wavelength 121 pm ejects an e lectron and it emerges with speed of $5.69 \times 10^{7} \mathrm{~m} / \mathrm{s}$. calculate the binding energy of the electron.
c) For the following operator and function, show that the function is an eigenfunction of the operator and determine the eigenvalue.

| Operator | Eigenfunction |
| :--- | :--- |
| $\frac{d^{2}}{d x^{2}}-4$ | $3 \cos 2 x$ |

d) What is the de Broglie wavelength of an electron accelerated to 100 eV
e) A photon of radiation with a wavelength of 305 nm ejects an electron from a meta I with a kinetic energy of 1.77 eV . Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
f) By evaluating the commutator, $\left[\mathrm{x}, \mathrm{P}_{\mathrm{x}}\right]$, show whether the operators for position an d momentum commute.
g) Two (unormalised) excited state wavefunctions of the hydrogen atom are
A) $\psi(r)=\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$
B) $\quad \psi(r, \theta, \phi)=r \sin \theta \cos \phi e^{-r / 2 a_{0}}$

Show that these two functions are mutually orthogonal.

## QUESTION 2 (25 MARKS)

a) A particle is in a state described by the function $\psi(x)=0.632 e^{2 i x}+0.775 \mathrm{e}^{-2 i x}$. What is the probability that the particle will be found with momentum $2 \hbar$
b) Consider the energy eigenvalues of a particle in a one dimensional box $E_{n}=\frac{h^{2} n^{2}}{8 m L^{2}}, \quad n=1,2,3, \ldots$ as a function of $n, m$ and $L$.
(i) By what factor do you need to change the box length $L$ to decrease the zero point energy by a factor of 400 for a fixed value of $m$ ?
(ii) By what factor would you have to change $n$ for fixed values of $L$ and $m$ to increase the energy by a factor of 400 ?
(iii) By what factor would you have to increase $L$ to have the zero point energy of an electron be equal to the zero point energy of a proton?
c) The function $\psi(x)=x\left(1-\frac{x}{L}\right)$, is an acceptable function for a particle in a one dimensional box of length $L$ and with infinitely high walls.
(i) Normalize $\psi(\mathrm{x})$
(ii) Calculate the expectation value $\langle x\rangle$

## QUESTION 3 (25 MARKS)

a) The total energy eigenvalues of the hydrogen atom are given by $E_{n}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}, n=1,2,3, \ldots$ and the three quantrum numbers associated with the total energy eigenvalues are related by $n=1,2,3, \ldots ; 1=0,1,2, \ldots n-1$; and $m_{1}$ $=0, \pm 1, \pm 2, \pm 3, \ldots, \pm 1$. Using the notation $\psi_{n l m_{l}}$, list all eigenfunctions that have the following energy eigenvalues and hence give the degeneracy of these energy levels:

$$
\begin{equation*}
\text { (i) } E=-\frac{e^{2}}{32 \pi \varepsilon_{0} a_{0}} \tag{3}
\end{equation*}
$$

(ii) $E=-\frac{e^{2}}{72 \pi \varepsilon_{0} a_{0}}$
b) Calculate the mean value of the radius, $\langle r>$, at which you would find an electron if the H atom wave function is $\psi_{210}(r, \theta, \phi)=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \cos \theta$
c) Define the quantum numbers $L$ and $S$ as applied to many electron atoms, indicating the kind of values they may have. State the physical meaning of the two quantum numbers in quantitative terms. Under what conditions are $L$ and $S$ no longer valid as quantum numbers? State the reason in a sentence or two.
d) Derive the term symbols for the electron configuration $n s^{1} n d^{1}$. Which of these terms has the lowest energy?

## QUESTION 4 (25 MARKS)

a) The ionization energies (1) of an electron from the valence orbitals on a carbon and an oxygen atoms are given in the table below:

| Atom | Valence orbital | $I / \mathrm{MJ} \mathrm{mol}^{-1}$ |
| :--- | :--- | :--- |
| $O$ | 2 s | 3.116 |
|  | 2 p | 1.524 |
| C | 2 s | 1.872 |
|  | 2 p | 1.023 |

(i) Use these data to construct a molecular orbital energy diagram for CO.[5]
(ii) What is the electron configuration of the ground state of CO ?
(iii) What is the bond order of CO?
(iv) Is CO paramagnetic or diamagnetic?
b) The highest occupied molecular orbitals for an excited electronic configuration of an oxygen molecule are $\left(\mid \pi_{g}\right)^{\dagger}\left(2 \sigma_{1 k}^{*}\right)^{1}$. Determine the molecular term symbols for oxygen in this electronic configuration.
c) The photoelectron spectrum of NO was obtained using He 58.4 nm (21.22 eV) radiation. It consisted of a strong peak at kinetic energy 4.69 eV and a series of 24 lines starting at 5.56 eV and ending at 2.2 eV . A shorter series of six lines began at 12.0 eV and ended at 10.7 eV . Account for this spectrum.
d) When light of wavelength 440 nm passes through a 3.5 mm of solution of an absorbing substance with a concentration of $0.667 \mathrm{mmol} / \mathrm{L}$, the transmittance is 65.5 \%.Calculate the molar absorption coefficient of the solute at this wavelength and express the answer in $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$.

## QUESTION 5 ( 25 MARKS)

a) Determine the number of translational, rotational and vibrational degrees of freedom in the following molecules:
(i) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii) OCS
(iii) $\mathrm{C}_{6} \mathrm{H}_{6}$
(iv) $\mathrm{H}_{2} \mathrm{CO}$
b) Classify each of the following molecules as spherical, a symmetric or an asymmetric top:
(i) $\mathrm{CH}_{3} \mathrm{Cl}$
(ii) $\mathrm{CCl}_{4}$
(iii) $\mathrm{SO}_{2}$
(iv) $\mathrm{SF}_{6}$
[4]
c) The rotational constant of ${ }^{2} D^{19} \mathrm{~F}$ determined from microwave spectroscopy is 11.007 $\mathrm{cm} \mathrm{c}^{-1}$. The atomic masses of ${ }^{19} \mathrm{~F}$ and ${ }^{2} \mathrm{D}$ are 18.9984032 u and 2.0141018 u , respectively. Calculate the bond length in ${ }^{2} \mathrm{D}^{19} \mathrm{~F}$ to the maximum number of significant figures consistent with this information.
d) The pure rotational Raman spectrum of ${ }^{14} \mathrm{~N}_{2}$ shows a spacing of $7.99 \mathrm{~cm}^{-1}$ between adjacent rotational lines.
(I) Calculate the value of the rotational constant B.
(II) What is the spacing between the unshifted line $v_{\mathrm{ex}}$ and the pure rotational line closest to $V_{\text {ex }}$ ?
(III) If 540.8 nm radiation from an argon laser is used as the exciting radiation, find the wavelength of the two pure rotational Raman lines nearest to the unshifted lines.

## Useful Integrals

1. $\int x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
2. $\int x^{3} e^{-x^{2}} d x=0$
3. $\int_{0} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
4. $\int \sin \theta d \theta=-\cos \theta+$ constant
5. $d \tau=r^{2} \sin \theta d r d \theta d \phi$
6. $\int x^{n} d x=\frac{1}{a^{n+1}} \quad n \neq-1$
7. $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3}$

## QUESTION 6 (25 MARKS)

a) The force constant of ${ }^{79} \mathrm{Br}^{79} \mathrm{Br}$ is $240 \mathrm{Nm}^{-1}$ and the atomic mass of ${ }^{79} \mathrm{Br}$ is 78.9183 u . Calculate
(i) The fundamental vibration frequency $\bar{v}$ and
(ii) The zero point energy of ${ }^{79} \mathrm{Br}_{2}$
b) The fundamental line in the infrared spectrum of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ occurs at $2143.0 \mathrm{~cm}^{-1}$, and the first overtone occurs at $4260.0 \mathrm{~cm}^{-1}$. Calculate
(i) The fundamental vibrational frequency, $\bar{v}$, and the anharmonicity constant, $\chi_{e}$
(ii) The exact zero point energy of CO .
c) Given that the fundamental vibrational frequency $\bar{v}=4138.32 \mathrm{~cm}^{-1}$ and the rotational constant $B=20.956 \mathrm{~cm}^{-1}$ for ${ }^{1} H^{19} F$, calculate the first three lines in the $P$ and $R$ branches in the vibration-rotation spectrum of $H F$.
d) How many normal modes of vibration does the molecule $\mathrm{BF}_{3}$ have? Sketch two of its bond stretching modes (non-degenerate) and indicate whether they are infrared active or not.

## QUESTION 7 (25 MARKS)

a) Describe the principles of laser action. Illustrate with an actual example.
b) What features of laser radiation are applied in Chemistry? Discuss two applications of lasers in Chemistry.
c) Photoionization of $\mathrm{H}_{2}$ by 21 eV electrons produces $\mathrm{H}_{2}{ }^{+}$. Explain why the intensity of the $v=2 \leftarrow 0$ transition is stronger than that of the $0 \leftarrow 0$ transition.

Total Marks

General data and fundamental constants

| Quantity | Symbol | Value |
| :---: | :---: | :---: |
| Speed of light | $c$ | $2.997924 .58 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ |
| Elementary charge | c | $1.602177 \times 10^{-19} \mathrm{C}$ |
| Faraday constant | $F=N_{A} \mathrm{e}$ | $9.6485 \times 10^{4} \mathrm{Cmol}^{-1}$ |
| Boltzmann constant | k | $1.38066 \times 10^{-23} \mathrm{JK}$ |
| Gas constant | $\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$ | $\begin{aligned} & 8.31451 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \text { atro } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$ |
| Planck constant | h | $6.62608 \times 10^{-34} \mathrm{Js}$ |
|  | $n=\mathrm{h} / 2 \pi$ | $1.05457 \times 10^{-34} \mathrm{Js}$ |
| A yogadro constant | $\mathrm{N}_{1}$ | $6.02214 \times 10^{31} \mathrm{~mol}^{-1}$ |
| Atomic mass unit | u | $1.65054 \times 10^{-17} \mathrm{Kg}$ |
| Mass |  |  |
| electron | $\mathrm{m}_{5}$ | $9.10939 \times 10^{-31} \mathrm{Kg}$ |
| protor | mp | $1.67262 \times 10^{-27} \mathrm{Kg}$ |
| neutron | $\mathrm{m}_{4}$ | $1.67493 \times 10^{-27} \mathrm{Kg}$ |
| Vacuum permittiyity | $\varepsilon_{0}=1 / \mathrm{c}^{2} \mu_{0}$ | $8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$ |
|  | $4 \pi \varepsilon_{0}$ | $1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$ |
| Yacuum permeability | $\mu_{0}$ | $4 \pi \times 10^{-7} \mathrm{Js}^{3} \mathrm{C}^{-1} \mathrm{~m}^{-1}$ |
|  |  | $4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$ |
| Magnetor |  |  |
| Bohr | $\mu_{\mathrm{B}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{c}}$ | $9.27402 \times 10^{-24} \mathrm{JT}^{-1}$ |
| nuclear | $\mu_{\mathrm{M}}=\mathrm{e} \pi / 2 \mathrm{~m}_{\mathrm{p}}$ | $5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$ |
| $g$ yalue | $g e$. | 2.00232 |
| Bobreradius | $\mathrm{a}_{0}=4 \pi \varepsilon_{0} h / m m_{2} e^{z}$ | $5.29177 \times 10^{-14} \mathrm{~m}$ |
| Fine-structure constant | $\alpha=\mu_{0} e^{2} c / 2 h$ | $7.29735 \times 10^{-1}$ |
| Rydberg constant | $\mathrm{R}_{\mathrm{m}}=\mathrm{m}_{\mathrm{c}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{\mathrm{a}}{ }^{2}$ | $1.09737 \times 10^{7} \mathrm{~m}^{-1}$ |
| Standard acceleration. |  |  |
| of free fall | g | $9.80665 \mathrm{~m} \mathrm{~s}^{-2}$ |
| Gravitational constant | G | $6.67259 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$ |

## Conversion factors

$$
\begin{array}{rl}
1 \mathrm{cal}=4.184 \text { joules }(\mathrm{J}) & 1 \mathrm{erg} \\
1 \mathrm{eV}=1.0022 \times 10^{-19} \mathrm{~J} & 1 \mathrm{eV} / \text { molecule } \\
=1 \times 10^{-7} \mathrm{~J} \\
& =96485 \mathrm{~kJ} \text { moro }
\end{array}
$$

Prefixes f p i $\mu$ m. c d $k$. M G $\begin{array}{llllllllll}\text { femto pico: nano micro milli } & \text { centi deci } & \text { kilo mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

## PERIODICTABLE OF ELEMENTS


*Lanthanide Scrics
***Aclinida Scrics

| 140.12 Cc 58 | 140.91 $\operatorname{Pr}$ 59 | 144.24 Na 60 | (145) $\mathrm{Pm}_{\text {m }}$ 61 | 150.36 Sm 62 | 151.96 Eu 63 | $\begin{gathered} 157.25 \\ G d \\ 64 \end{gathered}$ | $\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$ | $\begin{gathered} 162.50 \\ D y \\ 6 G \end{gathered}$ | $\begin{gathered} 164.93 \\ \mathrm{Ho} \\ .67 \end{gathered}$ | $\begin{gathered} 167.26 \\ \mathrm{Er} \\ 68 \end{gathered}$ | $\begin{gathered} 168.93 \\ \operatorname{Tm} \\ 69 \end{gathered}$ | $\begin{gathered} 173.04 \\ Y \mathrm{~b} \\ 70 \end{gathered}$ | $\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 7! \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 232.04 | 231.04 | 238.03 | 237.05 | (244) | (243) | (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) |
| Th | Pa | U | Np | Pu | Am | Cm | BK | Cf | IS | Fm | Md | No | Lr |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | . 103 |

() indicates the mass number of the isolope with he longest halflife.

