UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2017/2018

TITLE OF PAPER: PHYSICAL CHEMISTRY

 \mathfrak{Q}

COURSE NUMBER: C302

TIME: THREE (3) HOURS

INSTRUCTIONS:

5

There are seven (7) questions. Each question carries 25 marks. You are required to answer any four (4) Questions.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

[1]

QUESTION 1 (25 MARKS)

(a) Briefly explain the relationship between the Heisenberg uncertainty principle and the commutation of operators. [5]

(b) Given that
$$\hat{A} = \frac{d}{dx}$$
 and $\hat{B} = x^2$ find the commutator [\hat{A} , \hat{B}]. [5]

(c) A particle is in a state described by the function $\psi(x) = 0.632e^{2ix} + 0.775e^{-2ix}$. What is the probability that the particle will be found with momentum $2\hbar$? [4]

(d) Conside	r the function $f(x) = xe^{-x^2/2}$	$-\infty \le x \le \infty$	
(i)	Normalize f(x)		[6]
(ii)	Find the average value of x		[5]

QUESTION 2 (25 MARKS)

- a) Consider a particle of mass m confined in a cubic box of edge L. The potential energy inside the box is zero and infinity outside the box.
 - (i) Write the Hamiltonian for the particle inside the box [1]
 - (ii) Write the Schrodinger equation for this system
 - (iii) Without doing any calculations, use the solutions of the particle in a one dimensional box (given below) to write the solutions for the above Schrodinger equation and the expression for energy of the system. [4]
 - (iv) What is the degeneracy of the energy level $\frac{18h^2}{8mL^2}$? [4]

NB: For a particle in a one dimensional box of length L,

$$\psi(x) = \left(\frac{2}{L}\right)^{\frac{1}{2}} \sin\left(\frac{n\pi x}{L}\right) \text{ where n= 1, 2, 3,... and } E_n = \frac{n^2 h^2}{8mL^2}$$

- b) The harmonic oscillator may be used for a model for molecular vibrations, considering the masses connected by spring-like bonds. The molecule vibrates like a harmonic oscillator with mass equal to the reduced mass of the atoms of the molecule.
 - (i) Calculate the reduced mass of an HBr molecule (atomic masses are 1.0078 u and 79.90 u for H and Br, respectively.
 [3]

- (ii) The vibrational frequency of the HBr molecule is $v = 7.944 \times 10^{13} \text{ s}^{-1}$. Find the bond force constant k_{f} . [4]
- c) Find the most probable value(s) of x for a harmonic oscillator in its ground state, $\psi_0 = Ne^{-ax^2}$, a is a constant. [3]
- d) The wavefunction of a particle rotating on a ring is given by

$$\psi(\phi) = \frac{1}{\sqrt{2\pi}} e^{-im_l \phi}, m_l = 0, \pm 1, \pm 2, \dots$$
 Calculate the expectation value of ϕ . [5]

QUESTION 3 (25 MARKS)

Lithium and chlorine both have two naturally occurring isotopes whose abundance and atomic masses are given below:

Isotope	Abundance /%	Atomic mass/u
⁶ Li	8	6.0151
⁷ Li	92	7.0160
³⁵ Cl	75	34.9688
³⁷ Cl	25	36.9651

Naturally occurring LiCl consists of a mixture of four possible isotopic combinations. A sample of natural LiCl was vaporized at 1500 K and a microwave spectrum obtained. The lowest frequency line was found at 1.24 710 cm⁻¹.

- a) Why is the spectrum taken in the gas phase? [1]
 b) To which isotopic combination, does the lowest frequency line correspond? [4]
 c) Calculate the LiCl bond distance in this compound. [6]
 d) Assuming the bond distance is independent of isotopic substitution and rotational
- state, calculate the frequencies of the next three lines seen in the spectrum. To which isotope does each line correspond? [11]
- e) Which of these four lines (i.e. the 1.24 710 cm⁻¹ and the three in (d) above should be most intense? The least intense? Explain. [3]

QUESTION 4 (25 MARKS)

- a) Describe the fundamental vibrational modes of H₂O and CO₂. For each molecule indicate which modes will show infrared activity and why. [8]
- b) Explain the difference between a "hot band" and an "overtone band" in infrared spectra. How would you distinguish the two experimentally? [5]
- c) The anharmonicity constant for ${}^{35}CI^{19}F$ is 1.25 x 10 $^{-2}$ and the fundamental frequency is 793.3 cm⁻¹. The isotopic masses for ³⁵Cl and ¹⁹F are 34.9688 u and 18.9984 u, respectively.
 - Calculate the energies of the first four vibrational levels. (i) [4]
 - Calculate the difference in energy between the v = 25 and v = 26 levels using (ii) (1) the harmonic oscillator model and (2) the anharmonic oscillator model. Comment on the difference of your results from the two calculations. [4]
 - Calculate the bond force constant in this molecule. (iii) [4]

QUESTION 5 (25 MARKS)

a) The energy levels of a hydrogenic atom are given by the following equation:

 $E_n = -\frac{R_H h c Z^2}{n^2}$, where R_H is the Rydberg constant, Z is the nuclear charge and n = 1, 2, 3,...

- Calculate the wavelength of a photon emitted when an electron goes from n =(i) 3 to n = 2 in the hydrogenic atom He⁺ [4]
- What is the wavenumber of the first line in the Lyman series of He⁺? (For (ii) Lyman series, $n_2 \rightarrow n_1$, with $n_1 = 1$, $n_2 = 2$, 3...) [3]
- b) The wave function for a 2s orbital of a hydrogen atom is

$$\Psi_{2s} = N(2 - r/a_0)e^{\frac{r}{2a_0}}$$
. Determine the normalization constant N. [6]

c) State whether the following transitions are allowed or forbidden in a hydrogen atom. In each case, give a reason for your answer.

(i)
$$3d \rightarrow 2s$$
 (ii) $3p \rightarrow 1s$ [4]

- d) What is the lowest term symbol for Ti^{3+} if the first two electrons to be lost are the 4s electrons. [5]
- e) Calculate the magnitude of the orbital angular momentum of a 4d electron in a hydrogenic atom [3]

QUESTION 6 (25 MARKS)

۰

 (a) Use the molecular orbital theory to explain why the binding energy of N₂⁺ is less the that of N₂ whilst that of O₂⁺ is greater than that of O₂. (b) Give the valence bond description of the bonding in ammonia, NH₃. (c) Use the molecular orbital theory to assign the following bond lengths and bind energies to the following species: 	ian ing
Species: H2 ⁺ , H2, He2 ⁺ , He2 Bond lengths (pm): 74, 106, 108, and 6000 Binding energy (kJ/mol) :<<1, 241, 268, 457.	
(d) Consider the ions NO ⁻ and C_2^+	
(i) Draw the molecular orbital energy diagram for each of the species [4]	
(ii) Write down the electron configuration and give multiplicity of the grou	Ind
states. [4]	
(iii) Which ion should have the longer bond length? [1]	
OUESTION 7 (25 MARKS)	

a)	Describe the principles of laser action. Illustrate with an actual example.	[10]
b)	What features of laser radiation are applied in Chemistry? Discuss two	applications
	of lasers in Chemistry.	[10]
c)	Photoionization of H_2 by 21 eV electrons produces H_2^+ . Explain why the	intensity of
	the v = 2 \leftarrow 0 transition is tronger than that of the 0 \leftarrow 0 transition.	[5]

Total marks

/100/

÷

Useful Integrals

٠ •

.

1.
$$\int x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

2.
$$\int x^3 e^{-x^2} dx = 0$$

3.
$$\int_0 x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

4.
$$\int sin\theta d\theta = -cos\theta + constant$$

5.
$$d\tau = r^2 sin\theta dr d\theta d\phi$$

6.
$$\int x^n dx = \frac{1}{a^{n+1}} \qquad n \neq -1$$

7.
$$\int_0^{2\pi} cos^2 \theta sin\theta d\theta = \frac{2}{3}$$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	,e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{A}e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{A}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atrn K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	U ·	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi X 10^{-7} J s^{24} C^{-2} m^{-1}$
	, , .	$4\pi \ge 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻¹⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{p} = 4\pi \epsilon_{p} \hbar/m_{e} e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{\rm p} e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e}e^{4}/8h^{3}c\varepsilon_{p}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

l cal =	4.184 j	joules (.	ո յ	1 erg	; =			= $1 \times 10^{-7} J$					
l eV =	1.602 :	2 X 10-1	Ն	1 eV/n	/molecule =			= 96 485 kJ mol ⁻¹					
Prefixes	f	P	n	μ	<u>m</u> -	с	đ	k.	М	G			
	femto	pico.	nano	micro	milli	centi	deci	kilo	теда	giga			
	10 ⁻¹⁵	10 ⁻¹²	10 -9	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10 ⁹			
•		• , -					·:						

PERIODIC TABLE OF ELEMENTS

افر	<u>.</u>			`				0	ROUP	S								·
]	2	.3	4	5	6	7	8	. 9	10	11	12	13	14	15	16	17	18
PERIODS	14	11.4	IIIB	IVB	·VB	VIB	VIIB		VIIIB		IB	118	AIII	IVA	VA	YIA	VIIA	VIIIA
[1,008																	4,003
1	II.		· · · ·		(а.								•	lle
			•											÷				2
	6.941	9.012]							•	Atom	ic mass -	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be	· ·	,		· · · ·			•		Sy	mbol '-	B	C	N	0	F	-Ne
	3.	4							•		Alon	nic No. –		6	7	8	9	10
-	22 000	24 305	-					•		- 1			26.982	78 086	30 974	32.06	35 453	19 948
7	Na	Ma		· · · · ·	•	1111 A N	10101 OI	איז זיז ו	****				<u></u>	Si	р. р	S	CI	Ar
.	11.5	12				TRAI	1211101	A TOTOFIA	1171412			· ·	11	14	is	. 16	17	18
	20.000	10 070	11000	17.00	60.040	1 61 000	1 64 070	65.047	1 68 033	1	1 40 514	-				77.00	70.004	07.00
	39.098	40.078	44.956	47.88	50.942	51.996	24.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74,922	78,96	79.904	83.80
4	15	ี เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น	21	22	27		1910	26	0				. Ga	Ge	AS.	1 30	- 15 25	
	95 169	97.67	00 000	01 774	07.006	05.04	09 007	101:07	102.01	106.10	29	30		110 71	27 101	177 (0	136.00	171.20
	00,400 171-	07.02 Cu	00.900 V	71.224	1 92.900 NIS	N/0	70.907 To	D.	102.94	100,42	107.87	C.I	114.0Z	C-	121.75	127.00	120.90 T	Va
5	17	18	70	40	41	42	47			16	AB	10	- 11	50	50	57	57	54
	172.01	127.22	112 01	178 10	180.05	192.95	186 21	100.2	102.22	100.00	106.07	200'50	201.20	207.2	200 00	(200)	()(0)	(222)
	Ca	137.33	130.71	170,47	100.7J	103.03	Da	07	192.22	195.00	190.97	200.39	204.30	207.2	200.90 D:	(209) Do	(210)	(222) D.
6	CS cc	Da	- Lii 57		77	74	75	05 76	11	11	AU	E E E			101			
	227	226.07	(227)	(261)	(262)	(261)	(262)	(265)	(266)	(267)	.19		01	02	63	04	60	00
-	Re	12	(227) ** År	Rf	Ha	Unh	Ine	Ilno	Une	Ilun		•						
	87	88	89	104	105	106	107	108	109	110								
		, <u> </u>			L													
		÷		140.12	140.01		(140)	100.26	161.06	100000	1	1 40 40	11100	10				•
•		·		140.12	140.91	144.24	(145)	120.16	151.96	157.25	158.93	162,50	164.93	167.26	168.93	173.04	17.4.97	
*La	nthanid	le Series	r	Ce	L'T	1Vd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			ľ	۵۵	ַעכ	00	10	62	63	64	65	<u>6</u> 6	.67	68	69	70	71	•
**,	Actinide	Series	Í	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
			ļ	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
	•			90	91	92	93	94	95	96	97	· 98	99	100	101	102	,10J	•

() indicates the mass number of the isotope with the longest half-life.

,103