and the set is the

 TITLE OF PAPER
 :
 Organic Chemistry 1

 COURSE NUMBER
 :
 C303

 TIME
 :
 Three Hours

 INSTRUCTIONS
 :
 Answer any Two Questions from Section A and any Two Questions from Section B.

This Paper contains five (9) pages.

You must not open this paper until the Chief Invigilator has granted permission to do so.

SECTION A

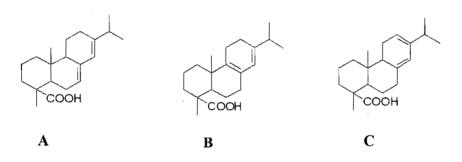
SPECTROSCOPY AND STRUCTURE ELUCIDATION

à

Question 1

(a) Define the following terms;

- (i) Spectroscopy
- (ii) Auxochrome
- (iii)Bathochromic Shift
- (iv)Index of hydrogen deficiency
- (v) Fingerprint region


[5]

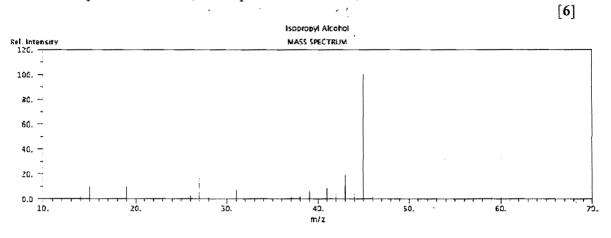
- (b) Explain the differences in λ_{max} in cisoid and transoid UV absorptions. [3]
- (c) A diene $C_{11}H_{16}$ was thought to have the structure below. Its UV spectrum showed a λ_{max} of 263 nm. Can the structure below be correct? If not, draw the structure with the same skeleton that satisfies the spectral data

[3]

(d) Can you distinguish between the following three isomeric acids by UV spectroscopy? Use the Woodward-Fieser rules to predict each λ_{max} . [6]

(e) Propose a structure for an alcohol $C_4H_{10}O$ that has the following;

¹³C NMR Spectral data:


Broadband-decoupled ¹³C NMR: 19.0, 31.7, 69.5 δ DEPT-90: 31.7 δ DEPT-135: positive peak at 19.0 δ , 31.7 δ , negative peak at 69.5 δ

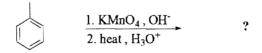
[8]

ġ.

Question 2

(a) The electron impact ionization (EI) mass spectrum for 2-propanol is shown below. Write Lewis structures for the species that give rise to the peaks at m/z 45 and m/z 43. Make sure to show all carbon, hydrogen, and oxygen atoms and all bonds, charges, lone pairs of electrons, and unpaired electrons.

(b) Write the products of the following reactions. Propose plausible IR absorption bands and m/z of the products.

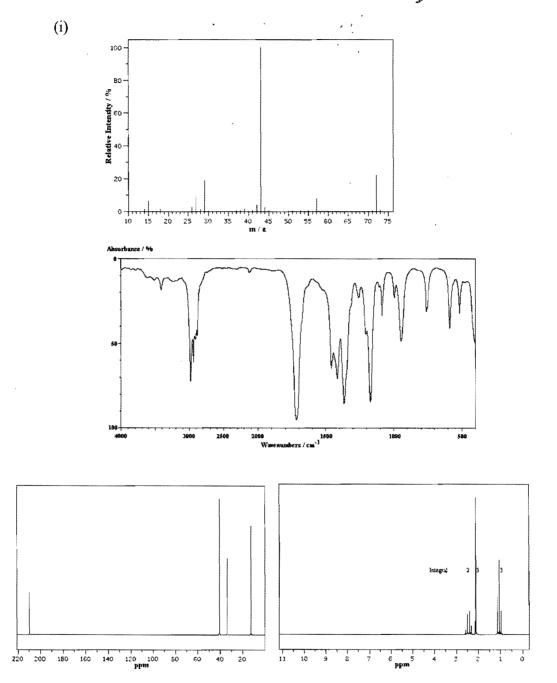

(i)

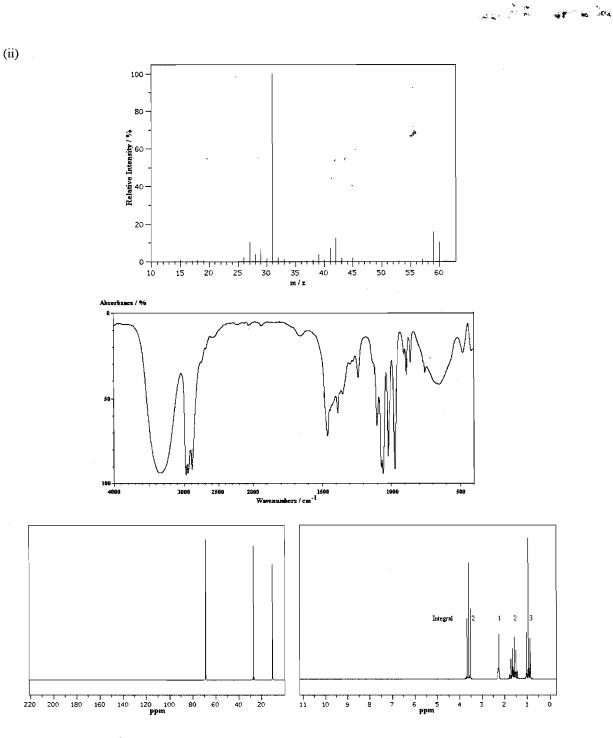
$$\frac{1. \text{ NaBH}_4}{2. \text{ H}_3\text{O}^+}$$
?

(ii)

1. CH₃MgBr ? 2. H₃O⁺

(iii)



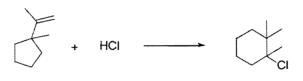

[9]

Question 3

(a) The following spectral data (CI mass spectrum, infra-red, ¹³C-nmr and H-nmr) is provided for an unknown compound. You are required to deduce the structure of the unknown compound that is consistent with all the data provided. [20]

The second s

- (b) When the ¹H NMR spectrum of acetone, CH_3COCH_3 , is recorded on an instrument operating at 200 MHz, a single sharp resonance at 2.1 δ is seen.
- (i) How many hertz downfield from TMS does the acetone resonance correspond to?
- (ii) If the ¹H NMR spectrum of acetone were recorded at 500 MHz, what would the position of the absorption be in δ units?
- (iii) How many hertz from TMS does this 500 MHz resonance correspond to?


[5]

SECTION B: REACTION AND SYNTHESIS OF ORGANIC COMPOUNDS

Question 4

(a) (i) Addition of HCl to 1-isopropenyl-1-methylcyclopentane yields 1-chloro-1,2,2trimethylcyclohexane. Suggest a mechanism, showing the structures of the intermediate and using curved arrows to indicate electron flow.

[6]

- (ii) Draw an energy diagram for the reaction, labeling all points of interest and making sure that the relative energy levels on the diagram are consistent with the information given.
- (b) (i) The reaction of hydroxide ion with chloromethane to yield methanol and chloride ion is an example of a general reaction type called nucleophilic substitution reaction:

 $HO^- + CH_3Cl \rightarrow CH_3OH + Cl^-$

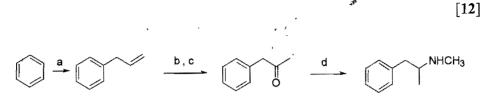
The value of ΔH° for the reaction is -75 kJ/mol, and the value of ΔS° is +54 J/(K.mol). What is the value of ΔG° (in kJ/mol) at 298 K? Is the reaction exothermic or endothermic? Is it exergonic or endergonic?

[6]

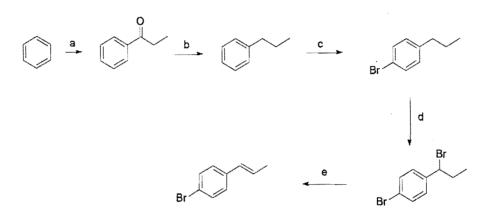
(ii) The addition of water to ethylene to yield ethanol has the following thermodynamic parameters:

$$H_2C = CH_2 + H_2O \longrightarrow CH_3CH_2OH$$

 $\Delta H^\circ = -44 \text{ kJ/mol}$
 $S^\circ = -0.12 \text{ kJ/(K.mol)}$
 $K_{eq} = 24$


- (a) Is the reaction exothermic or endothermic?
- (b) Is the reaction favorable (spontaneous) or unfavorable (nonspontaneous) at room temperature (298 K)?

[7]


 \mathbf{i}

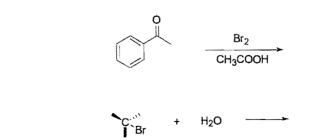
Question 5

(a) Fill in the reagents a – d in the following synthesis of racemic methamphetamine from benzene.

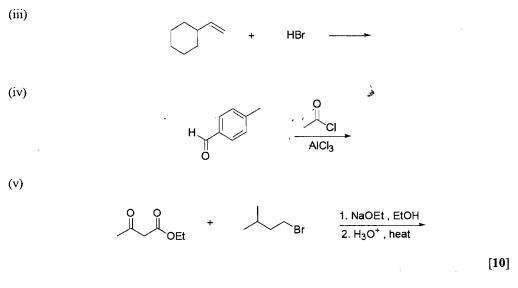
(b) Identify the reagents represented by the letters a-e in the following scheme. [13]

Question 6

(i)


(ii)

(a) (i) Name the four kinds of organic reactions.
(ii) Give an appropriate example for each named reaction.
(iii) What is a reaction mechanism?
(iv) Name two general types of reactions by which reactions occur, and give one real


(iv) Name two general types of reactions by which reactions occur, and give one real example for each type.

[5]

(b) Write the structure of the major product expected from the following reactions.

The state of the state at to be y

.

Elements	Isotope	Relative Abundance	Isotope [.]	Relative Abundance	Isotope	Relative Abundance		
Carbon	¹² C	100	¹³ C	. 1.11				
Hydrogen	Η ^ι	100	$^{2}\mathrm{H}$	0.016				
Nitrogen	^{14}N	100	¹⁵ N	0.38				
Oxygen	¹⁶ O	100	¹⁷ O	. 0.04	¹⁸ O	0.2		
Fluorine	¹⁹ F	100						
Silicon	²⁸ Si	100	²⁹ Si	5.1	³⁰ Si	3.35		
Phosphorus	³¹ P	100						
Sulfur	³² S	100	³³ S	0.78	³⁴ S	4.4		
Chlorine	³⁵ Cl	100			³⁷ Cl	32.5		
Bromine	⁷⁹ Br	100			⁸¹ Br	98		
Iodine	127I	100						

TABLE 1.3 Relative Isotope Abundances of Common Elements.

~

!																	18
1 H 1.008	2											13	14	15	16	17	2 He 45026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14 007	8 0 15,999	9 F 18,998	10 Ne 20,180
11 Na 22,990	12 Mg 24,305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30 974	16 S 32.06	17 Cl 35,45	18 Ar 34.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55,845	27 Co 58.933	28 NI 58,693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74,922	.14 Se 78.97	35 Br 79,904	36 Kr 83 798
37 Rb 85 468	38 Sr 87 62	39 Y 88 906	40 Zr 41,224	41 Nb 92,906	42 Mo 95.95	43 Tc 1985	44 Ru 101.07	45 Rh 102 91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 1)4 82	50 Sn 118 71	51 Sb 121.76	52 Te 127 60	53 1 126 90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71	72 Hf 178,49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 P1 195.08	79 Au 196.97	80 Hg 200.59	81 TJ 204.38	82 Pb 207.2	83 Bí 208.98	84 Po (2094)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (225)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (371)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 F1 (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
* Lanthanide series		57 La (38.91	58 Ce 140.12	\$9 Рг 140 ут	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151,96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164,93	68 Er 167.26	69 Tm 168.93	70 Yb 173-05	71 Lu 174.97	
# Actinide series		89 Ac (227)	90) Th 232,04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	94 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

.