DEPARTMENT OF CHEMISTRY

.

UNIVERSITY OF SWAZILAND

NOVEMBER 2017 RE-SIT EXAMINATION

TITLE OF PAPER	:Analytical Chemistry II: Fundamentals of Spectrophotometry
COURSE NUMBER	:C304/CHE 312
TIMEHOURS	: 3 Hours
Important Information	 Each question is worth 25 marks. Answer questions one (1) and any other three (3) questions in this paper. Marks for <u>ALL</u> procedural calculations will be awarded. Start each question on a fresh page of the answer sheet. Diagrams must be large and clearly labelled accordingly. This paper contains an appendix of chemical constants. Additional material: graph paper and data sheet.

You are not supposed to open this paper until permission has been granted by the chief invigilator

Question 1 [25 Marks]

- a) The absorbance of an iron thiocyanate solution containing 0.00500 mg Fe/mL was reported as 0.4900 at 540 nm.
 - (i) Calculate the specific absorptivity, including units; of iron thyocyanate on the assumption that a 1.00 cm cuvette was used. [3]
 - (ii) What will be the absorbance if (1) the solution is diluted to twice its original volume and (2) the solution is placed in a 5.00 cm cuvette? [3]
- b) Direct nebulization is the most common method of sample introduction with continuous atomizers. Discuss two types of nebulizers, with the aid of diagrams [8]
- c) In renewable energy, there is a growing interest into lignocellulosic biomass as feedstock. The aromaticity of the feedstock is used to predict the gasification reactivity. Outline a simplest / user-friendly analytical experiment you would carry out to determine aromatic functional groups of a solid biomass sample. [5]
- d) Describe how the "injector" in a gas chromatograph (GC) is similar to, and different from, the "injector" in an HPLC.

Question 2 [25 Marks]

- a) Describe how a deuterium lamp can be used to provide background correction for an atomic absorption spectrum. [5]
- b) Many instruments use monochromators to isolate the desired wavelength band for analysis. With the aid of a diagram, outline how wavelength selection is carried out by one of the two well-known monochromators. [5]

c) How does the Hollow Cathode Lamp work? [5]

- d) The ICP is a useful component of an instrument used for the analysis of various metals.
 - (i) What does ICP stand for? [1]
 - (ii) Draw and label a schematic of an ICP. [6]
- e) Describe the Beer Lambert Law and illustrate how it may be related to the transmittance
 [3]

Question 3 [25 Marks]

a) The design of different spectrophotometers depends on the type of measurement (e.g. atomic emission, atomic absorption, UV-visible absorption, fluorescence) they are intended to take. Draw a block diagram of a single beam spectrophotometer that might be used for UV-visible molecular absorbance.

i e

- b) IR absorbance spectra are primarily used to monitor molecular vibrations. Modern FTIRs dominate the market, why are they favoured over dispersive (monochromator based) instruments? [4]
- c) Identify two effects of the absorption of infrared radiation on the bonds of carbon dioxide. Explain why an Oxygen molecule does not absorb radiation. [5]
- d) For paper chromatography and column chromatography, identify;

(i)	The stationary and mobile phases	[6]

(ii) How the mobile phase moves [4]

Question 4 [25 Marks]

- a) Define the following; (i) a standard, (ii) detection limit and (iii) electromagnetic radiation [3]
- b) The draw and label the atomiser in Flame Atomic Absorption spectroscopy [6]
- c) What is 'column efficiency', in high performance liquid chromatography? How is its value influenced by 'loading' of the column, N (number of theoretical plates), and H (the plate height)? What other factors influence it (list 2)?
- d) Derivatization is the process of chemically modifying a compound to produce a new compound which has properties that are suitable for analysis using a GC.
 - (i) Explain three (3) scenarios which would require that a sample be first derivatized before being analysed using GC. [3]
 - (ii) Explain how the derivatization is carried out. [2]

(iii)Give one example of a reagent used to achieve the form of derivatization. [1]

e) Which detector is used for the analysis of halogenated hydrocarbons using the GC method
 [2]

Question 5 [25 Marks]

- a) Give definitions/descriptions of the following terms and phenomena used in spectroscopy;
 - (i) Analyte (2), Aliquot (2), the Beer-Lambert Law (3) and Spectroscopy (1). [9]
- b) An absorption in an electronic spectrum is recorded at 17 000 cm⁻¹. What does this correspond to in nm? [2]
- c) Explain the process of atomization and why it is important for analysis using the AAS.[3]
- d) Using an illustrative diagram discuss how chromatographic methods (GC and HPLC) can be employed for both qualitative and quantitative analysis of a sample.
 [6]
- e) A 7.25 X 10-5 M solution of potassium permanganate has a transmittance of 47.1% when measure in a 210 mm cell at wavelength 525 nm. Calculate the absorbance, A, of this solution and the molar absorptivity of potassium permanganate. [5]

Question 6 [25 Marks]

a)	Compare and contrast between Soxhlet extraction and solid phase extraction	[8]
b)	Draw and label a Flame structure carefully characterizing each zone	[9]
c)	Explain in detail how the UV spectrophotometer can be used for both quantitative	e and
	qualitative analysis.	[5]
d)	How is atomic absorption different from molecular absorption	[3]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	с	2.997 924 58 X 10 [™] m s ⁻¹
Elementary charge	e -	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	$1.380\ 66\ X\ 10^{-23}\ J\ K^{-1}$
Gas constant	$R = N_{k}k$	$8.314 51 \text{ J K}^{-1} \text{ mol}^{-1}$
Olds Combinant	··· ·· · · · · · · · · · · · · · · · ·	$8.205 78 \times 10^{-3} \text{ dm}^3 \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	ĥ	6.626 08 X 10 ⁻³⁴ J s
	$\bar{h} = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	$6.022 \ 14 \ X \ 10^{23} \ mol^{-1}$
Atomic mass unit	1 A 1	1.660 54 X 10 ⁻¹⁷ Kg
Mass		1.000 04 22 10 425
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻¹⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm p} = 1/c^2 \mu_{\rm p}$	$8.854 \ 19 \ X \ 10^{-12} \ J^{-1} \ C^2 \ m^{-1}$
· ····································	4πε	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ.	$4\pi \times 10^{-7} \text{ J s}^{25} \text{ C}^{-2} \text{ m}^{-1}$
	<i>t</i> - g	$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2{\rm m}_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	Se	2.002 32
Bohr radius	$a_{g} = 4\pi \epsilon_{g} \hbar/m_{e} e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{o} e^{2} c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e}e^{4}/8h^{3}c\epsilon_{e}^{2}$	
Standard acceleration		1.097 37 X 10 ⁷ m ⁻¹
of free fall	~	9.806 65 m s ⁻²
2	g G	
Gravitational constant	U	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
. *		
Conversion factors	· _:	
Conversion factors		•
1 001 - 4194 ionion		
1 cal = 4.184 joules	(J) 1 erg	= 1 X 10 ⁻⁷ J

1 eV =	-	2 X 10	 1 eV/n	olecul	e .		96 485 kJ mol ⁻¹			
Prefixes		P pico 10 ⁻¹²	µ micro 10 ⁻⁶	milli	c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10 ³	M mega 10⁵	G giga 10'	
		• •	•		•					

.

PERIODIC TABLE OF ELEMENTS

GROUPS																		
]	2	.3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	1٨	11/	IIIB	IVB	-VB	VIB	VIIB		VINB		IB	IIB	IIIA	IVA	VA	YIA	VIIA	VIIIA
· .	1,008					·		•										4.003
1	II	-							44°, ¹	•				۰			•	Ile
	1	-	· .														· · · · · ·	-2
• .	6.941	9.012									Atom	ic mass –	+ 10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be										nbol –	B	C	N	0	F	-Ne
•	3.	4 :									Atom	nic No. 🗌	5	Ġ	7	8	9	10
· · · ·	22.990	24,305	1				• •		•				26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg			. •	TRAN	ISITION	N FELEN	TENTS	ж Э			AI	Si	P	S	CI	Ar
5	11	12	· . ·										13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	. 27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	\mathbf{Sr}	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- In	Sn	Sb	Tc	I	Xe
	37	. 38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
· ·	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir '	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80 `	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)		•						
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		•	•			الم		*
	87	88	89	104	105	106	107.	108	109	110		-				<i></i>		
						·		-		•							•	•
•				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97	
*Lanthanide Series		s	Ce	Pr	Nd	Pm	Sm	Eu	Gd -	Tb	Dy	Ho	Er	Tm	Yb	Lu	÷.	
			58	59	60	61	62	63	64	65	<u>6</u> 6	· 67	68	69	70	71	ξ.	
**Actinide Series				232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	1 .
	,			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	2.5
	• •			90	91	92	93	94	95	96	97	- 98	99	100	101	102	103	• • •
			l	l	()	l												Šæ.

GROUPS

() indicates the mass number of the isotope with the longest half-life.