UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2017/2018

TITLE OF PAPER:

ADVANCED CHEMISTRY C401

THREE (3) HOURS

INORGANIC

COURSE NUMBER:

TIME ALLOWED:

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER <u>ANY FOUR (4)</u> QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) Write the formulae and draw structures of the following compounds:
 - (i) Dicarbonyl- η^5 -cyclopentadienyl- η^1 -cyclopentadienyliron(II).
 - (ii) Dichlorobis(η^{5} -cyclopentadienyl)titańium(IV).
- (b) (i) Describe the 18-electron rule and explain its basis.
 - (ii) Define a metal cluster.
 - (iii) Give the electron count for each of the following species, and determine which of them obey the 18-electron rule:
 - (1) Heptahaptocycloheptatrienyltricarbonylmolybdenum(I). [8]
 - (2) $(CO)Os(\equiv CPh)(PPh_3)_2Cl$
- (c) Explain why $V(CO)_6$ is easily reduced to the monoanion.

[4]

[8]

[4]

and the set of the set

- (d) (i) Considering the bonding in metal carbonyls, what factors would affect the C-O stretching vibrations?
 - (ii) A carbonyl complex has linear OC-M-CO group. How will the CO stretching frequency change (increase, decrease or remain the same) under the following conditions? Justify your answers.
 - (1) One CO is replaced by triethylamine, $(CH_3CH_2)_3N$:
 - (2) The complex acquires a positive charge
 - (3) The complex acquires a negative charge [9]

QUESTION TWO

- (a) Explain, with necessary orbital diagrams, how carbon monoxide, CO, which has negligible donor properties toward simple acceptors such as BF₃, can form strong bonds to transition metal atoms. [8]
- (b) Based on isolobal analogies, choose the organometallic fragments that might replace

(i)	CH_2^+	Fe	$(CO)_4$, Mn $(CO)_5$, or Re $(CO)_4$	
(ii)	CH^{-}	Ni	$(CO)_3$, $Co(CO)_3$, or $Mn(CO)_4$	
(iii)	CH_3	Ср	$OCo(CO), Mn(CO)_5, or Cr(CO)_6$	[3]

- (c) (i) Classify each of the following as closo, nido or arachno: (1) $Rh_6(CO)_{16}$ (2) $Os_5C(CO)_{15}$ (ii) Describe the structures of the above species.
- (d) Predict the transition metal-containing products of the following reactions:
 - (i) $Mo(CO)_6 + Ph_2P-CH_2-PPh_2 \rightarrow$
 - (ii) $H_3C-Mn(CO)_5 + SO_2 \rightarrow (no gases are evolved)$
 - (iii) $Rh(CO)_3Br + H_2 \rightarrow$ [6]

QUESTION THREE

- (a) Discuss briefly the <u>two</u> types of insertion reactions encountered in homogeneous catalysis. [6]
- (b) Explain the following observations:
 - (i) The ligand CO can be replaced from $Ni(CO)_4$ by PF₃ or SbCl₃, but no reaction occurs with PF₅ or SbCl₅.

and the second second

- (ii) The ligand cyclohepta-1,3,5-triene is hexahapto when bonded to the Cr(CO)₃ fragment, but only tetrahapto when bonded to the Fe(CO)₃ fragment.
- (c) Outline the mechanism for the alkene hydrogenation using RhCl(PPh₃)₃ as the catalyst. [13]

QUESTION FOUR

- (a) Give <u>two</u> separation methods that can produce the pure elements with little contamination from the other lanthanides. Describe one in detail. [6]
- (b) An empty, a half-filled and a completely filled 4f electronic level is often said to confer stability on the oxidation state of a lanthanide ion. Cite examples which bear out this statement. [3]
- (c) (i) Which actinide element has the most stable +2 oxidation state?
 - (ii) Which actinide element forms a + 3 ion with 7 electrons in the 5f orbital?
 - (iii) Name <u>one</u> actinide element that forms compounds in the +7 oxidation state. [3]
- (d) (i) Determine the number of unpaired electrons in Er^{3+} .
 - (ii) Derive the ground state-term symbol for Er^{3+} , and calculate its magnetic moment.
 - (iii) Write the formula of <u>one</u> lanthanide metal ion whose magnetic moment can be calculated by the spin-only formula. [6]
- (e) (i) Which actinide isotope(s) is/are obtained in macroscopic amounts?
 - (ii) What are the main principles upon which the separation of Np, Pu and Am from U are made? [7]

QUESTION FIVE

(a) Describe the main types of interhalogen compounds giving examples of each. [6]

[3]

we we have

- (b) Predict the products of the following reactions of interhalogens:
 - (i) $ICI + KI \rightarrow$
 - (ii) $ClF_3 + SbF_5 \rightarrow$
 - (iii) $IF_5 + CsF \rightarrow$
- (c) Based on the analogy between halogens and pseudohalogens, write the balanced equation for the probable reaction of
 - (i) cyanogens, (CN)₂ with aqueous hydroxide.
 - (ii) cyanide ion, (CN^{-}) with lead ion, (Pb^{2+}) . [2]
- (d) Draw the structure and write an equation for the preparation for each of the following compounds:
 - (i) I_3^+ (ii) BrF₅ [10]
- (e) The interhalogen, I_2Cl_6 exists as a dimer in the solid state.
 - (i) Write a balanced equation for the preparation of this compound.
 - (ii) I₂Cl₆ undergoes dissociation on warming to room temperature. Write the reaction for the dissociation process. [4]

QUESTION SIX

- (a) Name two common impurities in solvents and indicate how they can be removed. [4]
- Use the HSAB theory to predict which of the following pairs of adducts (b) (i) should be the more stable:
 - $[Fe(NMe_3)_6]^{3+}$ or $[Fe(SbMe_3)_6]^{3+}$ (1)
 - BeI_2 or BeF_2 (2)
 - Select the best answer and give the basis for your selection. (ii)
 - (1)Strongest acid: $H_2O, H_2S, H_2Se \text{ or } H_2Te$
 - Stronger base: (2)NF₃ or NH₃

Consider each of the following solvents: (c)

- Acetic acid, CH₃COOH Ammonia, NH₃ (II)
- (III) Sulphuric acid, H₂SO₄
- Give equations for autoionisation of the pure solvents. (i)
- (ii) Give appropriate equations to show what will happen if CH₃COOH is dissolved in
 - (1)NH₃

(I)

(d)

(2) H_2SO_4 [5]

[8]

also de est

ST IN MA

 \mathbf{b}

- State the Bronsted-Lowry definition of acids and bases. (i) (ii) State the Lewis definition of acids and bases and write two equations that
 - illustrate it, including one that involves a protonic acid. [4]
- (e) Predict whether the equilibrium constants for the following reactions should be greater than 1 (reaction lies to the right) or less than 1 (reaction lies to the left):
 - (i)
 - $CdI_2 + CaF_2 \leftrightarrows CdF_2 + CaI_2$ $[CuI_4]^{2-} + [CuCl_4]^{3-} \leftrightarrows [CuCl_4]^{2-} + [CuI_4]^{3-}$ (ii) [4]

PERIODIC TABLE OF ELEMENTS

GROUPS																		
2. 	1	2	3	4	5	6	7	8	9	10	11	12	.13	14	15	16	17	18
PERIODS	IA	ПА	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	ШA	IVA	VA	VIA	VIIA	VIIIA
	1.008											2						4,003
1	H						*											He
•	1		7									_		-1				2
	6.941	9.012									Atom	ic mass	10.811	12.011	14.007	15.9991	18,998	20,180
2		Be	14								Syr	nbol	₽B	C		0	F	Ne
	3	4									Atom	uc No.	-5	6	7	8	9	10
	22,990	24.305											26.982	28,086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	I ELEM	ENTS				Al	Si	P	S	CI	Ar
	11	12		•									13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50,942	51,996	54,938	55.847	58.933	58,69	63,546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	Ŷ	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y ·	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe.
· · ·	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138,91	178.49	180,95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)				· ·				
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
	87	88	89	104	105	106	107	108	109	110		4						
	•		-															
				140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97	
*Lanthanide Series		s	Ce	<u>Pr</u>	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
			58	59	.60	61	62	63	64	65	66	67	68	69	70	71		
**Actinide Series		ſ	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	i	
			Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		
				90	91	92	93	94	95	96	97	98	99.	100	101	102	103	

() indicates the mass number of the isotope with the longest half-life.

.....

ě