UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2017/2018

TITLE OF PAPER:	ADVANCED CHEMISTRY	INORGANIC
COURSE NUMBER:	C401	
TIME ALLOWED:	THREE (3) HOURS	
INSTRUCTIONS:	THERE ARE SIX (6) ANSWER ANY FOUR (4)	QUESTIONS. QUESTIONS.
	EACH QUESTION IS MARKS.	WORTH 25
		~~ * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

[6]

QUESTION ONE

- (a) (i) Determine whether or not the following compounds obey the 18-electron rule:
 (1) Mn(CO)₄NO
 (2) Co(H)(N₂)(PPh₃)₂
 [2]
 - (ii) Draw the structures of the following compounds: (1) $Fe_3(CO)_{12}$ (2) $(\eta^5$ -cyclopentadienyl)₂Cr₂(NO)₄ [4]
- (b) Briefly describe <u>three</u> methods of generating **metal-carbon** bonds. Illustrate with appropriate examples. [6]
- (c) (i) Write equations for a <u>two-step</u> preparation of $(\eta^5-C_5H_5)_2$ Ni from C_5H_6 , Na and NiCl₂.
 - (ii) Metal-Metal bonding in multinuclear species is not always clear-cut. Solely on the basis of the 18-electron rule. suggest whether $(\eta^5 - C_5H_5)Ni(\mu-PPh_2)_2Ni(\eta^5 - C_5H_5)$ might be expected to contain a metal-metal bond. [4]
- (d) For each of the following sets, explain the trends in the IR-active stretching frequencies (in cm^{-1}):

(i)	$[Mo(CO)_3(PF_3)_3]$	2040, 1991
	$[Mo(CO)_3(PMe_3)_3]$	1945, 1851
(ii)	[Ni(CO) ₄]	2046
	$\left[\mathrm{Fe}(\mathrm{CO})_4\right]^{2-}$	1788

(e) Identify the <u>third</u> row transition element which would give the most thermodynamically stable compound of the type:

- (i) $[(\eta^6 C_6 H_6)M(CO)_3]^+$ (ii) $(\eta^5 cyclopentadienyl)M(NO)$
- (iii) $[(\eta^5-C_5H_5)M(CO)_3]_2$, (assume a single **M–M** bond) [3]

[3]

[6]

[4]

QUESTION TWO

- (a) Identify the following reactions by type and predict the products:
 - (i) $\operatorname{Re}_2(\operatorname{CO})_{10} + \xrightarrow{No'Hg}$ (ii) $\operatorname{Rh}(\operatorname{PPh}_3)_3\operatorname{Br} + \operatorname{Cl}_2 \rightarrow$ [4]
- (b) Give organic fragments isolobal with each of the following:
 - (i) $(\eta^{5}-C_{5}H_{5})Ni$
 - (ii) $(\eta^6 C_6 H_6) Cr(CO)_2$
 - (iii) $[Fe(CO)_2(PPh_3)]^{-1}$
- (c) Use Wade's rules to suggest likely structures for the following: (i) B_5H_{11} (ii) $Os_6(CO)_{17}[P(OMe)_3]_3$ (iii) $[Os_{10}C(CO)_{24}]^{2-}$ [9]
- (e) (i) Show how cyclohepta-1,3,5-triene is coordinated to the $Mo(CO)_3$ and $Fe(CO)_3$ fragments.
 - (ii) The reaction of chloroform with Co₂(CO)₈ yields a compound of formula Co₃(CH)(CO)₉. NMR and IR data indicate the presence of only terminal CO ligands and the presence of a CH group. Propose a structure consistent with the spectra and the correlation of cluster valence electron (CVE) count with structure. [6]

QUESTION THREE

- (a) By means of suitable examples, explain the following:
 - (i) Oxidative addition (ii) Olefin metathesis
 - (iii) Reductive elimination
- (b) Write balanced reaction equations showing the overall (net) reaction in each of the following processes:
 - (i) Hydroformylation
 - (ii) The Ziegler-Natta process
- (c) The complex $Rh(H)(CO)(PPh_3)_3$ can be used in the catalytic synthesis of npentanal from an alkene having one less carbon atom.
 - Outline the main steps in the mechanism of this process indicating the reaction type of each step (such as oxidative addition) and identifying the catalytic species.
 - (ii) Increasing the concentration of phosphine in the phosphine-rhodium cycle slows the reaction rate. Explain. [15]

- Give three examples in each case of lanthanide ions that are (a)
 - diamagnetic. (i)
 - precipitated by sulphate ions. (ii)

[6]

- A mixture of the lanthanide metal ions was prepared containing Ce³⁺, Eu³⁺ and (b) Yb^{3+} ...To separate the ions, a portion of the solution of the ions was poured through a sulphonated polystyrene ion-exchange resin. The column was then eluted with a dilute solution of H₄EDTA adjusted to pH 8 with ammonia.
 - Which ion comes out first? Explain. (i)
 - Suggest another buffer solution that could be used to elute the ions from (ii) the column.
 - (iii) After the above separation procedure, one of the ions was purified, and then converted to the bromide, MBr₃. A total of 1.3209 g of the bromide was dissolved in aqueous solution and an excess of silver nitrate solution was added to produce a precipitate. The mass of dried precipitate was 1.8027 g. Calculate the molar mass of the lanthanide metal M, and write its name and chemical symbol. [10]

(c) (i) Derive the ground state-term symbol for
$$Ho^{3+}$$
 ion, in the form ${}^{2S+1}L_1$.

- Calculate the theoretical magnetic moment of the ion. (ii) [6]
- (d) From among the three elements Th, U and Np, predict which one has
 - the most stable 6p orbital. (i)
 - (ii) the smallest first ionisation energy.
 - the largest metallic radius. (iii)

[3]

QUESTION FIVE

(a)	How are interhalogen cations prepared? Illustrate with examples	5. [6]
(b)	Give a structure of each of the following species, and suggerparing each of them:	gest a method of
	(i) IF_6^- (ii) BrICl	[6]
(c)	The interhalogen compound, BrF ₃ , has been one of the most aqueous solvent. Give <u>three</u> main reasons why it is such a useful	widely used non- solvent. [3]
(d)	The interhalogen compound, IF, disproportionates on heating. equation for the disproportionation reaction.	Write a balanced [1]

- (e) What are pseudohalogens? (i)
 - (ii) Discuss the most important parallels in chemistry between the halogens and pseudohalogens. [9]

QUESTION SIX

- H₂Os₃(CO)₁₀ catalyses the isomerization of alkenes: (a) $RCH_2CH=CH_2 \rightarrow E-RCH=CHMe + Z-RCH=CHMe$ By determining the cluster valence electron count for $H_2Os_3(CO)_{10}$ deduce what makes this cluster an effective catalyst. [5]
- (b) Identify the starting isotopes A and B in each of the following syntheses of
 - transactinoid elements: (i) $\mathbf{A} + {}^{4}_{2}\text{He} \rightarrow {}^{256}_{101}\text{Md} + {}^{1}_{0}\text{n}$ (ii) $\mathbf{B} + {}^{16}_{8}\text{O} \rightarrow {}^{255}_{102}\text{No} + 5({}^{1}_{0}\text{n})$ [2]
- (c) Use the HSAB theory to predict which of the following pairs of adducts (i) should be the more stable:
 - $(CH_3)_3Al:N(CH_3)_3$ or $(CH_3)_3Al:Sb(CH_3)_3$ (1)
 - $[Ni(H_2O)_6]^{2+}$ or $[Fe(H_2O)_6]^{3+}$ (2)
 - The common ores of nickel and copper are sulphides. By contrast, (ii)aluminium is obtained from the oxide and calcium from the carbonate. Explain these observations in terms of hardness. [6]
- (d) Using the most appropriate acid-base theory, identify the acids and bases in the following reactions:
 - $SiO_2 + Na_2O \rightarrow Na_2SiO_3$ (i)
 - $Cl_3PO + Cl^- \rightarrow Cl_4PO^-$ (ii)
 - $BF_3 + 2ClF \rightarrow Cl_2F^+ + BF_4^-$ (iii) [6]

Name three properties that determine the utility of a solvent. (e) (i)

Account for the trend in acidity: (ii) $[Fe(OH_2)_6]^{2^+} < [Fe(OH_2)_6]^{3^+}$

[6]

PERIODIC TABLE OF ELEMENTS

,								6	ROUPS	5								
	1 .	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	ПА	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB] IB	ША	IVA	VA	VIA	VIIA	VIIIA
	1.008															I		4.003
1																		He 2
	6.941	9.012	7								Atom	ic mass	10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be	1								Syı	nbol -	B	C	N	0	F	Ne
-	3	4	Ť								Aton	nic No.	5	6	7	8	9	10
	22,990	24.305]										26.982	28,086	30.974	32.06	35,453	39.948
3	Na	Mg		TRANSITION FLEMENTS									AI	Si	P	S	CI	Ar
-	11											13	14	15	16	17	18	
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83,80
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Ċo	Ni	Cu .	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85,468	87.62	88,906	91.224	92,906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe,
		38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg		Pb _	Bi	Po	At	Rn
	55	56	57	$\frac{72}{(2(1))}$	73	74		76	$\frac{77}{1000}$	78	79	80	81	82	83	84	85	86
-	223 E-	226.03 Da	(227)	(201) Df	(262)	(263)	(262)	(265)	(200) TI	(267)								
7	87	1 X 1 88	80	104	105	106		108	100	110								
	07			104	105	100	107	100	109	110	ł					į		
			ſ	140.12	140.91	144.24	(145)	150.36	151.06	157.25	158.03	162 50	164.03	167.26	168.03	173.04	174 07	
*Lanthanide Series			Ге. Се.	Pr	Nd \	\mathbf{Pm}	150.50 Sm	En 1	Gd	150.55 Th	102,50 Dv	Ho	107.20 Er	Tm	Vh	Τ.		
		5	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
**,	Actinide	e Series	ŀ	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
			Í	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	

1

() indicates the mass number of the isotope with the longest half-life.