UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2017/2018

TITLE OF PAPER:
 ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME: THREE (3) HOURS

INSTRUCTIONS:

There are seven (7) questions in four sections. Each question carries 25 marks. Answer at least one question from each section (four Questions in total)

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION A

QUESTION1. [25 Marks]

a) Explain why each of the formulas for the transport coefficients in the kinetic theory of gases is proportional to the mean free path (λ) and the mean speed ($\mathrm{U}_{\text {mean }}$)
b) Explain why you would expect the viscosity of nitrogen gas to increase with an increase in temperature whilst the viscosity of nitrogen liquid is expected to decreases with an increase in temperature.
c) The viscosity of CO_{2} at 1 atm and $0^{\circ} \mathrm{C}$ is $139 \mu \mathrm{P}$. Calculate the collision cross section of CO_{2} at this temperature.
d) A solid surface with dimensions $3.5 \mathrm{~mm} \times 4 \mathrm{~cm}$ is exposed to helium gas at 111 Pa and 1500 K . How many collisions do the He atoms make with the surface in 100s.
e) The diffusion coefficient of glucose in water is $6.81 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}$. The viscosity of water at the same temperature is $8.937 \times 10^{-4} \mathrm{kgm}^{-1} \mathrm{~s}^{-1}$ and the density of glucose is $1.55 \mathrm{~g} / \mathrm{cm}^{-3}$. Assuming that Stokes law applies and that the molecule is spherical, estimate
i. The radius of the glucose molecule.
ii. The molar mass of glucose

Question 2. [25 Marks]

a) Consider the following reaction:

$$
\mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{AgCl}(\mathrm{~s}) \rightarrow 2 \mathrm{HCl}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s})
$$

i. Devise a cell in which the above reaction is the cell reaction
ii. Write the Nernst equation for the cell in (i) above.
b) The Zero-current potential for the above cell was 0.3524 V when the molality of HCl was $0.100 \mathrm{~mol} / \mathrm{kg}$ and the hydrogen pressure was 1 bar. Calculate the activity and mean activity coefficient of the HCl assuming hydrogen is s perfect gas.
c) Calculate the percent error in the mean activity coefficient if the Debye-Huckel limiting law is used to calculate it.
d) Using the standard potentials of the couples $\mathrm{Co}^{3+} / \mathrm{Co}^{2+}, \mathrm{Co}^{2+} / \mathrm{Co}$ and $\mathrm{AgCl} / \mathrm{Cl}^{-}, \mathrm{Ag}$ calculate the standard potential and equilibrium constant of the following reaction.

$$
\mathrm{Co}^{3+}(\mathrm{aq})+3 \mathrm{Cl}^{-}+3 \mathrm{Ag}(s) \rightarrow 3 \mathrm{AgCl}(s)+\mathrm{Co}(s)
$$

e) Calculate the masses (separately) of
i) $\quad \mathrm{KNO}_{3}(\mathrm{aq})$ and
ii) $\quad \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ to add to a $0.110 \mathrm{~mol} / \mathrm{kg}$ solution of $\mathrm{KNO}_{3}(\mathrm{aq})$ containing 500 g of solvent to raise its ionic strength to 1.00 .

SECTION B

Question 3 [25 Marks]

a) Discuss the main features of the isolation method used in the determination of rate laws.
b) The following data were obtained for the decomposition of dinitrogen trioxide.

Time/s	0	184	526	867	1877
$\left[\mathrm{~N}_{2} \mathrm{O}_{3}\right] / \mathrm{M}$	2.33	2.08	1.67	1.36	0.72

i. Show that the decomposition follows the first order kinetics [6]
ii. Determine the value of the rate constant and the half-life of the reaction
c) For the reaction at $298 \mathrm{~K}, \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} \leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}, \mathrm{k}_{\mathrm{f}}=4.5 \times 10^{10} \mathrm{M} / \mathrm{s}$ and $k_{r}=8.0 \times 10^{5} \mathrm{M} / \mathrm{s}$. A solution is made from 0.100 mol acetic acid and enough water to make 1.00 L . Find the relaxation time, τ, if a small perturbation is imposed on the solution such that the final temperature is 298.5 K .

Question 4 [25 Marks]

a) Briefly explain each of the following by using any equation or diagram of your choice to illustrate your point:
i. The pre-equilibrium approach
ii. The steady state approximation
b) Lundeman's mechanism for the dissociation of ozone in the stratospherel $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$ is

$$
\begin{array}{cl}
O_{3} \text { (ozone) } \leftrightarrow O_{2}+O & k_{1}, k_{-1} \\
O_{3}+O \rightarrow 2 O_{2} & k_{2}
\end{array}
$$

Using the steady state approximation, show that the rate law is $v=\frac{k_{2} \mathrm{~K}_{e q}\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]}$
[5]
c) The experimental rate law for the reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

is $v=k\left[N_{2} O_{5}\right]$,
The proposed mechanism for the reaction has the following elementary single step processes

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{5} \stackrel{k_{1}, k_{-1}}{\longrightarrow} \mathrm{NO}_{2}+\mathrm{NO}_{3} \text { fast } \\
& \mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{k_{2}} \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{O}_{2} \text { Slow } \\
& \mathrm{N}_{2} \mathrm{O}_{5}+\mathrm{NO} \xrightarrow{k_{3}} \mathrm{NO}_{2}+\mathrm{NO}_{2}
\end{aligned}
$$

Using the pre equilibrium approach verify whether the proposed mechanism is correct or not
d) Thermal decomposition of a compound has been studied using optical absorption at 350 nm . The following data was obtained:

Time/s	0	600	1200	∞
Alabsorbance	1.50	0.92	0.65	0.40

Given that the rate law: $\ln \frac{A-A_{\infty}}{A_{0}-A_{\infty}}=\ln \frac{[A]}{[A]_{0}}=-k t$ determine the rate constant, k

SECTION C

Question 5 [25 Marks]

a) Explain why the polarizability of a molecule decreases at high frequencies
b) Suppose you are toid that Ozone adsorbs on a particular surface in accord with a Langmuir isotherm. How would you use the pressure dependence of the fractional coverage to distinguish between adsorption without dissociation and with dissociation?
c) The molar polarization, P_{m}, is defined as $P_{m}=\frac{N_{A}}{3 \varepsilon_{0}}\left(\alpha+\frac{\mu^{2}}{3 k T}\right)$. The molar polarization of gaseous water at 100 kPa , is given in the table below.

T / K	384.3	420.1	444.7	484.1	522.0
$\mathrm{P}_{\mathrm{m}} /\left(\mathrm{cm}^{3} / \mathrm{mol}\right)$	57.4	53.5	50.1	46.8	43.1

Calculate:
i. The polarizability volume of water using graphical method.

Question 6 [25 Marks]

a) What assumptions did Langmuir make when deriving his isotherm $\theta=\frac{\alpha p}{1+\alpha p}$
b) For N_{2} adsorbed on a certain sample of charcoal at $-77^{\circ} \mathrm{C}$, the volume of adsorbed N_{2} (measured at $0{ }^{\circ} \mathrm{C}$ and 1 atm) per gram of charcoal varied with N_{2} pressure as given below:

P/atm	3.5	10.0	16.7	25.7	33.5	39.2
$\mathrm{~V} /\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	101	136	153	162	165	166

i. Show that the data fits the Langmuir isotherm.
ii. Determine the value of α
iii. Determine the volume of N_{2} needed for monolayer coverage.
c) CO adsorbs non-dissociatively on the (111) plane of Ir with $\mathrm{A}_{\text {des }}=2.4 \times 10^{14} / \mathrm{s}$ and $\mathrm{E}_{\mathrm{a}, \text { des }}=151 \mathrm{~kJ} / \mathrm{mol}$. Find the half life of CO chemisorbed on $\operatorname{Ir}(111)$ at 300 K
d) The adsorption of solutes on solids from liquids often follows a Freundlich isotherm, $\theta=k p^{\frac{1}{n}}$. Adapt the equation to apply to a solution and check its applicability to the following data for the adsorption of acetic acid on charcoal and determine the constants \boldsymbol{k} and \mathbf{n}.

[acid]mol/L	0.05	0.10	0.50	1.0	1.5
$\mathrm{~W}_{\mathrm{a}} / \mathrm{g}$	0.04	0.06	0.12	0.16	0.18

W_{a} is the mass adsorbed per unit mass of charcoal.

SECTION D

QUESTION 7. [25 marks]

a) With the aid of an equation/diagram or any other information explain the following observations
i. As the lonic radius increases (r), the limiting molar conductivity $\left(\Lambda_{m}^{0}\right)$ and the ion mobility (u), increases
[2]
ii. Ionic hydrodynamic radius (a) decreases with an increase of ionic radius (r).
iii. The mobility of H^{+}is $9.03 \times$ higher than the mobility of Li^{+}.
b) Derive the linearised Ostwald dilution law for a weak electrolyte. (clearly show all steps)
c) The following data were obtained for a weak electrolyte, HA in ethanol at $25^{\circ} \mathrm{C}$

Concentration, $\mathrm{c} / 10^{-4} \mathrm{~mol} / \mathrm{dm}^{-3}$	1.566	2.600	6.219	10.441
Conductivity, $\mathrm{K} / 10^{-6} \mathrm{Scm}^{-1}$	1.788	2.418	4.009	5.336

i. Show that these data is in accordance with the Ostwald dilution law. [4
ii. Calculate the dissociation constant for this electrolyte.
d) Derive an expression that shows how the pressure of a gas inside an effusing oven varies with time if the oven is not replenished as the gas escapes, $p=p_{0} e^{-\frac{t}{\tau}}, \tau=\left(\frac{2 \pi M}{R T}\right)^{\frac{1}{2}} \frac{V}{A}$ where A is the area of the effusing hole and given that the rate of effusion, $Z_{w} A=\frac{p A N_{A}}{(2 \pi M R T)^{\frac{1}{2}}}$ and $\int \frac{1}{x}=\ln x$

Then show that the half life ($t_{\frac{1}{2}}$) is independent of the initial pressure. [10]

Useful Information

Debye-Huckel constant $\mathrm{A}=0.509$

Diffusion coefficient $D=\frac{\lambda v_{\text {mean }}}{3}$, Coefficient of thermal conductivity, $K=\frac{1}{3} \frac{\lambda v_{\text {mean }} C_{v, m} N}{V}$, Coefficient of viscosity $\eta=\frac{m \lambda v_{\text {mean }} N}{3}$, volume of a sphere $V=\frac{4}{3} \pi r^{3}$,
mass of $\mathrm{CO}_{2}=7.306 \times 10^{-26} \mathrm{~kg} . \quad Z_{w}=\frac{p}{(2 \pi k m T)^{\frac{1}{2}}}, \quad \lambda_{i}=z_{i} u_{i} F, s=u E, \quad \mathrm{D}=\frac{\mathrm{kT}}{f}=\frac{k T}{6 \pi \eta a}$,
$\mathrm{c}=\frac{\mathrm{n}_{0}}{\mathrm{~A}(\pi \mathrm{Dt})^{\frac{1}{2}}} e^{-x^{2} / 4 D t}$

Reduction half reaction	$\mathrm{E}^{\top} N$
$\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}$	+0.80
$\mathrm{Ag}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}^{+}$	+1.98
$\mathrm{AgCl}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{Cl}^{-}$	+0.22
$\mathrm{AgBr}+\mathrm{e}^{-} \rightarrow \mathrm{Ag}+\mathrm{Br}^{-}$	+0.0713
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}+2 \mathrm{e} \rightarrow 2 \mathrm{Hg}+2 \mathrm{Cl}^{-}$	+0.2676
$\mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Hg}$	+0.86
$\mathrm{Co}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}$	+1.81
$\mathrm{Co}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}$	-0.28

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	.	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{+} \mathrm{C} \mathrm{mol}^{-1}$
Boitrmann constant	k	$1.38065 \times 10^{-23} \mathrm{JK}^{-1}$
Gas constant	$R=N_{A} k$	$8.31451 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
		$\begin{aligned} & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \text { atm } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \times 10 \mathrm{JTorr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$h=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	$\mathrm{N}^{\text {A }}$	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	บ	.1.660 $54 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	m_{0}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{Js}^{2} \mathrm{C}^{-1} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \uparrow / 2 \mathrm{~m}$	$9.27402 \times 10^{-244} \mathrm{~J} \mathrm{~T}^{-1}$.
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{JT}^{-1}$
g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \Pi / m \mathrm{~m}_{\mathrm{e}} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} \mathrm{e}^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$R=m_{6} e^{4} / 8 h^{3} c \varepsilon_{a}^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-14} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

1 cal	4.184 joules (J)	1 erg	$=$	$1 \times 10^{-7} \mathrm{~J}$
1 eV	$1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} / \mathrm{molecule}$	$=$	$96485 \mathrm{~kJ} \mathrm{~mol}^{-1}$

 $\begin{array}{llllllllllll}\text { femto pico. nano micro milli } & \text { centi } & \text { deci } & \text { kilo mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

() indicates the mass number of the isolope milh the longest halffife.

