TITLE OF PAPER:	INTRODUCTORY CHEMISTRY I
COURSE CODE:	CHE1S1
TIME ALLOWED:	THREE (3) HOURS

INSTRUCTIONS:
THERE ARE TwO SECTIONS: SECTION A AND SECTION B. ANSWER ALL THE QUESTIONS IN SECTION A AND ANY THREE QUESTIONS FROM SECTION B.

SECTION A IS WORTH 25 MARKS AND EACH QUESTION IN SECTION B IS WORTH 25 MARKS.

> | THE ANSWER SHEET FOR SECTION A IS |
| :--- |
| ATTACHED TO THE QUESTION PAPER.GIVE YOUR |
| ANSWERS TO SECTION A QUESTIONS BY |
| RECORDING ON THE ANSWER SHET THE LETTER |
| CORRESPONDING TO THE CORRECT ANSWER. |

AT THE END OF THE EXAM, BEFORE YOU LEAVE, PLACE THE ANSWER SHEET INSIDE THE UNISWA ANSWER BOOKLET CONTAINING YOUR ANSWERS TO SECTION B

[^0]PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

SECTION A: ANSWER ALL THE QUESTIONS (25 MARKS)

1. The mass of a sample is 550 milligrams. Which of the following expresses that mass in kilograms?
A. $5.5 \times 10^{8} \mathrm{~kg}$
B. $5.5 \times 10^{5} \mathrm{~kg}$
C. $5.5 \times 10^{-4} \mathrm{~kg}$
D. $5.5 \times 10^{-6} \mathrm{~kg}$
E. $5.5 \times 10^{-1} \mathrm{~kg}$
2. Given that 1 inch $=2.54 \mathrm{~cm}, 1 \mathrm{~cm}^{3}$ is equal to
A. $16.4 \mathrm{in}^{3}$
B. $6.45 \mathrm{in}^{3}$
C. $0.394 \mathrm{in}^{3}$
D. $0.155 \mathrm{in}^{3}$
E. $0.0610 \mathrm{in}^{3}$
3. Acetone, which is used as a solvent and as a reactant in the manufacture of Plexiglas $®$, boils at $56.1^{\circ} \mathrm{C}$. What is the boiling point in degrees Fahrenheit?
A. $159^{\circ} \mathrm{F}$
B. $133^{\circ} \mathrm{F}$
C. $101^{\circ} \mathrm{F}$
D. $69.0^{\circ} \mathrm{F}$
E. $43.4^{\circ} \mathrm{F}$
4. The result of $(3.8621 \times 1.5630)-5.98$ is properly written as
A. 0.06
B. 0.056
C. 0.0565
D. 0.05646
E. 0.056462
5. Bromine is the only nonmetal that is a liquid at room temperature. Consider the isotope bromine-81, ${ }_{35}^{81} \mathrm{Br}$. Select the combination which lists the correct atomic number, neutron number, and mass number, respectively.
A. $35,46,81$
B. $35,81,46$
C. $81,46,35$
D. $46,81,35$
E. $35,81,116$
6. Silicon, which makes up about 25% of Earth's crust by mass, is used widely in the modern electronics industry. It has three naturally occurring isotopes, ${ }^{28} \mathrm{Si},{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$. Calculate the atomic mass of silicon.

Isotope	Isotopic Mass (amu)	Abundance \%
${ }^{28} \mathrm{Si}$	27.976927	92.23
${ }^{29} \mathrm{Si}$	28.976495	4.67
${ }^{30} \mathrm{Si}$	29.973770	3.10

A. 29.2252 amu
B. 28.9757 amu
C. 28.7260 amu
D. 28.0855 amu
E. 27.9801 amu
7. Which of the following is the empirical formula for hexane, $\mathrm{C}_{6} \mathrm{H}_{14}$?
A. $\mathrm{C}_{12} \mathrm{H}_{28}$
B. $\mathrm{C}_{6} \mathrm{H}_{14}$
C. $\mathrm{C}_{3} \mathrm{H}_{7}$
D. $\mathrm{CH}_{2,3}$
E. $\mathrm{C}_{0.43} \mathrm{H}$
8. The substance, CoCl_{2}, is useful as a humidity indicator because it changes from pale blue to pink as it gains water from moist air. What is its name?
A. cobalt dichloride
B. cobalt(II) chloride
C. cobalt chloride
D. cobaltic chloride
E. copper(II) chloride
9. Magnesium fluoride is used in the ceramics and glass industry. What is the mass of 1.72 mol of magnesium fluoride?
A. 43.3 g
B. 62.3 g
C. 74.5 g
D. 92.9 g
E. 107 g
10. Lead (II) nitrate is a poisonous substance which has been used in the manufacture of special explosives and as a sensitizer in photography. Calculate the mass of lead in 139 g of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.
A. 107 g
B. 90.8 g
C. 87.0 g
D. 83.4 g
E. 62.6 g
11. Household sugar, sucrose, has the molecular formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. What is the $\%$ of carbon in sucrose, by mass?
A. 26.7%
B. 33.3%
C. 41.4%
D. 42.1%
E. 52.8%
12. Terephthalic acid, used in the production of polyester fibers and films, is composed of carbon, hydrogen, and oxygen. When 0.6943 g of terephthalic acid was subjected to combustion analysis it produced $1.471 \mathrm{~g} \mathrm{CO}_{2}$ and $0.226 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$. What is its empirical formula?
A. $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{4}$
B. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
C. $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2}$
D. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{4}$
E. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
13. Select the net ionic equation for the reaction between sodium chloride and mercury(I) nitrate.
$2 \mathrm{NaCl}(a q)+\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{NaNO}_{3}(a q)+\mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)$
A. $\mathrm{Na}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{NaNO}_{3}(a q)$
B. $\mathrm{Hg}_{2}{ }^{2+}(a q)+2 \mathrm{Cl}(a q) \rightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}(s)$
C. $\mathrm{NaCl}(a q) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
D. $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}(a q) \rightarrow \mathrm{Hg}_{2}^{2+}(a q)+2 \mathrm{NO}_{3}^{-}(a q)$
E. $\mathrm{Hg}_{2}{ }^{2+}(a q) \rightarrow \mathrm{Hg}_{2}(s)$
14. Which of the following is a strong acid?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. HNO_{3}
C. HF
D. $\mathrm{CH}_{3} \mathrm{COOH}$
E. $\mathrm{H}_{2} \mathrm{O}$
15. Automobile batteries use $3.0 \mathrm{M}_{2} \mathrm{SO}_{4}$ as an electrolyte. How much 1.20 M NaOH will be needed to neutralize 225 mL of battery acid?
$\mathrm{H}_{2} \mathrm{SO}_{4}(a q)+2 \mathrm{NaOH}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Na}_{2} \mathrm{SO}_{4}(a q)$
A. 0.045 L
B. 0.28 L
C. 0.56 L
D. 0.90 L
E. 1.1 L
16. Vinegar is a solution of acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, dissolved in water. A $5.54 \mathrm{-g}$ sample of vinegar was neutralized by 30.10 mL of 0.100 MNaOH . What is the percent by weight of acetic acid in the vinegar?
A. 0.184%
B. 1.63%
C. 3.26%
D. 5.43%
E. 9.23%
17. The size of an atomic orbital is associated with
A. the principal quantum number (n).
B. the angular momentum quantum number (l).
C. the magnetic quantum number $\left(m_{l}\right)$.
D. the spin quantum number $\left(m_{s}\right)$.
E. the angular momentum and magnetic quantum numbers, together.
18. The energy of an electron in the hydrogen atom is determined by
A. the principal quantum number (n) only.
B. the angular momentum quantum number (l) only.
C. the principal and angular momentum quantum numbers ($n \& l$).
D. the principal and magnetic quantum numbers ($n \& m_{l}$).
E. the principal, angular momentum and magnetic quantum numbers.
19. Which one of the following sets of quantum numbers can correctly represent a $3 p$ orbital?
a.
$n=3$
b.
$l=1$
$n=1$
c.
$n=3$
d.
$n=3$
e.
$m_{l}=2$
$l=3$
$m_{l}=3$
$l=2$
$l=1$
$n=3$
$m_{l}=3$
$m_{l}=1$
$m_{l}=-1$
$l=0$
$m_{l}=1$
A. a
B. b
C. c
D. d
E. e
20. Which one of the following equations correctly represents the process involved in the electron affinity of X?
A. $\mathrm{X}(\mathrm{g}) \rightarrow \mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-}$
B. $\mathrm{X}^{+}(g) \rightarrow \mathrm{X}^{+}(a q)$
C. $\mathrm{X}^{+}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{X}(\mathrm{g})$
D. $\mathrm{X}(g)+\mathrm{e}^{-} \rightarrow \mathrm{X}(g)$
E. $\mathrm{X}^{+}(g)+\mathrm{Y}^{-}(g) \rightarrow X Y(s)$
21. Select the element with the greatest metallic character.
A. Li
B. Ca
C. Al
D. Pb
E. Cs
22. Consider the set of isoelectronic atoms and ions $\mathrm{A}^{2-}, \mathrm{B}, \mathrm{C}, \mathrm{D}^{+}$, and E^{2+}. Which arrangement of relative radii is correct?
A. $\mathrm{A}^{2-}>\mathrm{B}^{-}>\mathrm{C}>\mathrm{D}^{+}>\mathrm{E}^{2+}$
B. $\mathrm{E}^{2+}>\mathrm{D}^{+}>\mathrm{C}^{2}>\mathrm{B}^{-}>\mathrm{A}^{2-}$
C. $\mathrm{A}^{2-}>\mathrm{B}^{-}>\mathrm{C}<\mathrm{D}^{+}<\mathrm{E}^{2+}$
D. $\mathrm{A}^{2-}<\mathrm{B}^{-}<\mathrm{C}^{2}>\mathrm{D}^{+}>\mathrm{E}^{2+}$
E. None of these is correct.
23. Which one of the following Lewis structures is definitely incorrect?
a. BF_{3}
b. XeO_{3}
c. N_{2}
d. AlCl_{4}^{-}
e. $\mathrm{NH}_{4}{ }^{+}$

$\stackrel{N}{N}$

A. a
B. b
C. c
D. d
E. e
24. Select the Lewis structure in which formal charges are minimized for the periodate anion, $\mathrm{IO}_{4}{ }^{-}$.
a.
b.

:

c.

A. a
B. b
C. c
D. d
E. e
25. What is the electron pair geometry of $\mathrm{ClO}_{3} \mathrm{~F}$, whose Lewis structure is given below?

A. trigonal pyramidal
B. square planar
C. square pyramidal
D. tetrahedral
E. octahedral

SECTION B: ANSWER ANY THREE QUESTIONS (75 MARKS)

Q.1. (a) Perform the following calculations, paying special attention to significant figures, rounding and units:
i) $\frac{16.3521 \mathrm{~cm}^{2}-1.448 \mathrm{~cm}^{2}}{7.085 \mathrm{~cm}}$
ii) $V=\pi r^{2} h$, where $r=6.23 \mathrm{~cm}, \mathrm{~h}=4.630 \mathrm{~cm}$
iii) $\left(6.022 \times 10^{23}\right.$ atoms $\left./ \mathrm{mol}\right)\left(2.18 \times 10^{-18} \mathrm{~J} /\right.$ atom $)\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
b) A certain element X has two naturally occurring isotopes, ${ }^{10} \mathrm{X}$ and ${ }^{11} \mathrm{X}$. Find the percentage abundances of ${ }^{10} \mathrm{X}$ and ${ }^{11} \mathrm{X}$ given that the atomic mass of $\mathrm{X}=10.81 \mathrm{amu}$, the isotopic mass of ${ }^{10} \mathrm{X}=10.0129$, and the isotopic mass of ${ }^{11} \mathrm{X}=11.0093 \mathrm{amu}$.
c) In each of the following, something is wrong with part of the statement. Provide the correct name or formula:
i) $\quad \mathrm{BaCl}_{2}$ is called barium dichloride
ii) Sodium sulphide has the formula $(\mathrm{Na})_{2} \mathrm{SO}_{3}$
iii) Iron(II) sulphate has the formula $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
iv) Dicesium carbonate has the formula $\mathrm{Cs}_{2} \mathrm{CO}_{3}$
d) Name each of the following:
i) $\begin{array}{llllll}\mathrm{SF}_{4} & \text { ii) } \quad \mathrm{Cl}_{2} \mathrm{O}_{7} & \text { iii) } \quad \mathrm{S}_{2} \mathrm{Cl}_{2} & \text { iv) } \quad \mathrm{IF}_{7}\end{array}$
Q.2. (a) Vitamin $\mathrm{C}(\mathrm{MM}=176.12 \mathrm{~g} / \mathrm{mol})$ is a compound that contains C, H and O atoms only. When a 1.000 -gram sample is placed in a combustion chamber and burned, the following data are obtained:

$$
\begin{aligned}
& \text { Mass of } \mathrm{CO}_{2} \text { absorber after combustion }=85.35 \mathrm{~g} \\
& \text { Mass of } \mathrm{CO}_{2} \text { absorber before combustion }=83.85 \mathrm{~g} \\
& \text { Mass of } \mathrm{H}_{2} \mathrm{O} \text { absorber after combustion }=37.96 \mathrm{~g} \\
& \text { Mass of } \mathrm{H}_{2} \mathrm{O} \text { absorber before combustion }=37.55 \mathrm{~g}
\end{aligned}
$$

(i) Determine the empirical formula of vitamin C .
(ii) What is the molecular formula of vitamin C ?
Q.2. (b) Copper is sometimes obtained from an ore containing copper(I) sulphide by a multi-step process. After initial grinding, the first step is to "roast" the ore (heat it strongly in the presence of oxygen gas) to form powdered copper(I) oxide and gaseous sulphur dioxide. The balanced reaction equation involved is,

$$
\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CuO}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

(i) How many moles of oxygen are required to roast 10.0 mol of copper(I) sulphide?
(ii) How many grams of sulphur dioxide are formed when 10.0 mol of the ore is roasted?
(iii) How many kilograms of oxygen are required to form 2.86 kg of copper(I) oxide?
Q.3. (a) When two liquids hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, and dinirogen tetroxide, $\mathrm{N}_{2} \mathrm{O}_{4}$, are mixed, an explosive reaction takes place to form dinitrogen and water vapour. The balanced reaction equation is,

$$
2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l})+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

(i) Determine which one of the reactants is the limiting reagent when $1.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{H}_{4}$ and $2.00 \times 10^{2} \mathrm{~g}$ of $\mathrm{N}_{2} \mathrm{O}_{4}$ are mixed.
(ii) How many grams of nitrogen gas form?
Q.3. (b) Sand (silicon dioxide, SiO_{2}) reacts with powdered carbon at high temperature to form silicon carbide and carbon monoxide. When 100.0 kg of sand is processed, 51.4 kg of SiC is recovered. What is the percentage yield of SiC from this process? The balanced reaction equation is

$$
\begin{equation*}
\mathrm{SiO}_{2}(\mathrm{~s})+3 \mathrm{C}(\mathrm{~s}) \rightarrow \mathrm{SiC}(\mathrm{~s})+2 \mathrm{CO}(\mathrm{~g}) \tag{6}
\end{equation*}
$$

Q.3. (c) Using appropriate calculations, briefly describe how you would prepare 800 mL of a 0.15 M aqueous solution from a 6.0 M stock solution.
Q.3. (d) Because of their toxicity, soluble mercury compounds such as mercury(II) nitrate must be removed from industrial waste water. One removal method involves reacting waste water with sodium sulphide to produce solid mercury(II) sulphide and sodium nitrate solution.

$$
\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{HgS}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})
$$

Consider a laboratory simulation, where 50 mL of 0.010 M mercury(II) nitrate reacts with 20 mL of 0.10 M sodium sulphide. How many grams of mercury(II) sulphide form?
Q.4. (a) What are the n, ℓ, and m_{ℓ} values for the 5 f subshell?
Q.4. (b) What feature of an orbital is related to each of the following quantum numbers?
(i) Principal quantum number (n)
(ii) Angular momentum q. number (ℓ)
(iii) Magnetic q. number (me)
Q.4. (c) Using the periodic table, rank each set of the main group elements in order of decreasing atomic size:
(i) $\mathrm{K}, \mathrm{Ga}, \mathrm{Ca}$
ii) I, Xe, Ba
[2]
Q.4. (d) Give condensed electron configurations, and box orbital diagrams showing valence electrons for the following species:
(i) Mo^{3+}
(iii) As^{3-}
Q.4. (e) For each of the following, give the Lewis structure, the electron pair geometry, the molecular geometry and the hybridization of the central atom:
(i) SbF_{5}
(ii) BrF_{5}

CHE151 RE-SIT EXAM SECTION A ANSWER SHEET - JULY 2018,

Stud ID No. \qquad Programme:

Ques No.	Letter corresponding to the correct answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

PERIODIC TABLE OF THE ELEMENTS
GROUPS

periods	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	UA	118	IvB	vB	Vib	vili		vili		18	118	11 A	iva	va	VIA	VIIA	VIIIA
1	$\begin{aligned} & 4.008 \\ & \mathbf{H} \end{aligned}$																	$\begin{aligned} & 4.003 \\ & \mathrm{He} \end{aligned}$
2	$\underset{3}{6.941}$	$\begin{aligned} & 9.012 \\ & \mathbf{B e} \end{aligned}$	TRANSITION ELEMENTS										$\left\lvert\, \begin{gathered} \left.\begin{array}{c} 0.811 \\ \mathbf{B} \\ 5 \end{array} \right\rvert\, \end{gathered}\right.$	$\begin{aligned} & \hline 12.011 \\ & \mathbf{C} \\ & \hline \end{aligned}$	$\left.\begin{array}{c} 14.007 \\ \mathbf{N}_{7} \end{array}\right]$	$\begin{array}{\|c} 15.999 \\ 0 \\ 8 \end{array}$	$\begin{gathered} 18.998 \\ \underset{9}{\mathbf{F}} \end{gathered}$	$\stackrel{\substack{20.130 \\ \mathrm{Ne}_{10}^{20}}}{\substack{20}}$
3	$\begin{aligned} & \stackrel{22990}{\mathrm{Na}_{11}} \end{aligned}$	$\begin{array}{\|c} 24.305 \\ \mathrm{Mg}_{12} \mathrm{~g} \end{array}$											$\begin{array}{\|l\|} \hline 26.982 \\ A 1 \\ 13 \end{array}$	$\begin{array}{\|c\|} 28.8855 \\ S_{14} \\ \hline \end{array}$	$\begin{gathered} 30.9738 \\ \hline 15 \end{gathered}$	$\begin{aligned} & 32.06 \\ & \hline 3.5 \\ & 16 \end{aligned}$	$\begin{aligned} & { }^{35.453} \\ & \mathrm{Cl}_{17} \end{aligned}$	$\begin{aligned} & { }^{39.948} \\ & \mathrm{Ar}_{18} \end{aligned}$
4	$\stackrel{3.0093}{\substack{39}}$	$\begin{aligned} & 40.078 \\ & { }_{20}^{40} \end{aligned}$	$\begin{aligned} & 44,956 \\ & S_{21}^{4} \\ & \hline \end{aligned}$	$\begin{gathered} 47.88 \\ \mathrm{Ti}_{22} \end{gathered}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|c\|} \hline 0.9415 \\ 23 \end{array}\right.$		$\begin{aligned} & 54.938 \\ & \mathbf{M n}_{25} \end{aligned}$	$\begin{aligned} & \text { 55.847 } \\ & F_{: 26} \end{aligned}$	$\begin{array}{\|c} 58.933 \\ \mathrm{Co}_{27} \\ \hline \end{array}$	${\underset{28}{58.69}}_{\mathrm{Ni}_{28}}$	$\begin{aligned} & \begin{array}{c} 63.546 \\ \mathrm{Cu} \\ 29 \end{array} \end{aligned}$	$\begin{gathered} 65.39 \\ \underset{30}{ } \\ \hline \end{gathered}$	$\begin{aligned} & 69.723 \\ & \mathrm{Ga} \end{aligned}$	$\begin{aligned} & 72.61 \\ & \mathrm{Ge} \\ & 32 \end{aligned}$	$\begin{gathered} 74.922 \\ \mathrm{As}_{33} \\ \hline \end{gathered}$	$\stackrel{78.96}{8.96}$	$\begin{aligned} & 79.904 \\ & \mathbf{B r}_{35} \end{aligned}$	$\underset{36}{{\underset{36}{83.80}}_{K}^{1}}$
5	$\begin{array}{\|l\|} \hline 85.468 \\ \mathbf{R b} \\ \mathbf{R b} \\ \hline \end{array}$	$\stackrel{\substack{87.62 \\{ }_{38} \\ \hline}}{ }$	$\begin{array}{\|c\|} \hline 88.90 .6 \\ \mathbf{Y} \\ \hline \end{array}$	$\begin{aligned} & 91.224 \\ & \mathrm{Zr}_{40} \end{aligned}$	$\begin{gathered} 92.2064 \\ \mathrm{Nb} \\ 41 \end{gathered}$	$\begin{aligned} & 9594 \\ & \mathrm{Mo} \\ & \hline 42 \end{aligned}$	$\begin{gathered} 98.907 \\ T \mathrm{Tc} \\ 43 \\ \hline \end{gathered}$	$\begin{gathered} 101.07 \\ \text { Ru } \\ .44 . \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} 102.906 \\ \mathrm{Rh}_{45} \\ \hline \end{gathered}\right.$	$\begin{gathered} 106.42 \\ \mathbf{P d}_{46}^{10} \end{gathered}$	$\begin{array}{\|c\|} \hline 107.868 \\ \mathrm{Ag}_{47} \\ \hline \end{array}$	$\begin{gathered} 12.41 \\ \mathrm{C}_{48} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 14.82 \\ \mathrm{In}_{49} \\ \hline \end{array}$	$\begin{gathered} 18,71 \\ S_{50} \\ 50 \end{gathered}$	$\begin{aligned} & 121.75 \\ & \mathrm{Sb} \\ & \mathrm{Si} \end{aligned}$	$\begin{aligned} & 127.60 \\ & \text { Te } \\ & . \end{aligned}$	$\begin{gathered} 126.904 \\ 1 \\ \hline 53 \\ \hline \end{gathered}$	$\begin{aligned} & 13.29 \\ & \text { Xe } \\ & \\ & \hline \end{aligned}$
6	$\stackrel{\substack{132.905 \\ \mathrm{CS}_{5} \\ \hline}}{ }$	$\begin{array}{\|c\|} \hline 137.33 \\ \hline \\ \hline 56 \\ \hline \end{array}$	$\begin{gathered} 138.906 \\ * \mathrm{La}_{57} \\ \hline \mathbf{5 7} \end{gathered}$	$\begin{aligned} & 178.49 \\ & \underset{77}{\mathbf{H}} \\ & \hline \end{aligned}$	$\begin{gathered} 18,948 \\ \mathrm{Ta} \\ 73 \end{gathered}$	$\frac{18.85}{W}$	$\begin{gathered} 186.207 \\ \mathrm{Re}^{2} \\ 75 \end{gathered}$	$\begin{array}{r} 190.2 \\ { }_{76} \end{array}$	$\begin{array}{\|c\|c\|} \hline 19222 \\ \boldsymbol{I r}_{\pi} \end{array}$	$\begin{aligned} & 195.09 \\ & { }_{78} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 196.967 \\ . A u 7 \\ \text { 79 } \end{array}$	$\stackrel{200.59}{\mathrm{Hg}_{80}}$	$\begin{array}{\|c\|} \hline 044.383 \\ T_{81} \\ \hline \end{array}$	Pb 82	$\begin{gathered} 20.989 \\ \mathrm{Bi} \\ 83 \end{gathered}$	$\begin{aligned} & \stackrel{299}{299} \\ & \mathbf{P}_{84} \\ & \hline \end{aligned}$	(210) ${ }_{\text {At }}^{\text {At }}$	${ }_{86}{ }^{122} \mathrm{Rn}$
7	$\stackrel{(2,23)}{\stackrel{y}{2}_{87}}$	$\begin{gathered} 226.025 \\ \mathbf{R}_{88} \end{gathered}$	$\begin{array}{\|c\|} \hline(227) \\ \text { **Ac } \\ 89 \end{array}$	$\begin{aligned} & (261) \\ & \mathrm{R}_{104} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{2262}{\left(\mathbf{H a}_{105}^{2}\right.}}{ }$	$\begin{gathered} (263) \\ \text { Unh }_{106}^{2(2)} \end{gathered}$	$\begin{aligned} & \begin{array}{l} (2623 \\ \text { Uns }_{107} \end{array} \end{aligned}$	$\begin{gathered} \hline(255) \\ \hline \text { Uno } \\ 108 \end{gathered}$	$\begin{gathered} \text { (2264 } \\ \text { Une } \\ \text { ine } \end{gathered}$	\cdots					\%			

* Lanthanide series
** Actinide serles

140.115 Ce	$\begin{array}{\|c} 140.908 \\ \hline \\ \hline 59 \end{array}$	$\stackrel{14.24}{14.24}_{\substack{10}}$	$\begin{aligned} & \hline 145) \\ & \mathrm{P}_{61} \end{aligned}$	$\mathrm{S}_{62}^{150.36}$	$\begin{array}{\|c\|c\|} \hline 15.96 \\ \mathrm{E}_{63} \\ \hline \end{array}$	157.25 G 64	$\begin{gathered} 158.925 \\ T_{65}^{105} \end{gathered}$	$\begin{aligned} & 162.56 \\ & D_{66} \\ & \hline \end{aligned}$	$\begin{gathered} 1 \epsilon_{64,930}^{(10} \\ \hline 67 \end{gathered}$	$\begin{gathered} \stackrel{167.26}{\text { Er re }_{6}} \end{gathered}$	$\stackrel{T_{69}^{186.934}}{\mathrm{Tm}_{2}}$	173.04 $\mathbf{Y b}$ 70	$\stackrel{174.967}{\mathrm{~L}_{71} 0}$
38				${ }^{(244)}$	(243)		(247)	${ }^{(251)}$				${ }^{\text {(259) }}$	${ }^{\text {(260) }}$
Th	${ }_{91}$	U_{92}	$\underset{9}{\mathrm{~Np}}$	${ }_{94}$	Am	Cm_{96}	Bk	${ }_{98}$	Es	$\underset{100}{\text { Fm }}$	Md	No	${ }_{103}^{\mathrm{Lr}}$

Numbers below the symbol of the element indicates the atomic
numbers. Atomic masses, above the symbal of the element, are
based on the assinned relative alomic mass of 'so $=$ exacty 12 .
I indicater the mass rumber of the isolope with the longest
hall-lite.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed. Quantities. Units, and Symbols in Physicul Chemistry, Blackwell Scientific Publications, Boston, 1988. pp 86-98.
Avogadros number
atomic mass unit
charge of the electron (or proton)
Faraday constant
mass of the electron

Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

SI Unit Prefixes

Conversions and Relationships

[^0]: A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

