UNIVERSITY OF SWAZILAND
 FINAL EXAMINATION
 ACADEMIC YEAR 2017/2018

TITLE OF PAPER:
Atomic Structure, Chemical Bonding and Chemistry of s- and p-Block Elements

COURSE CODE:
TIME ALLOWED: CHE221

THREE (3) HOURS
INSTRUCTIONS:

1. There are six (6) questions. Answer any four (4) questions. Each question is worth 25 marks.
2. Begin the solution to each question on a new page

A periodic table and a table of constants have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

a) Calculate the energies of the $n=1$ and $n=2$ states of the hydrogen atom in joules per atom and in kilojoules per mole'. What is the difference in energy ($\Delta \mathrm{E}$) of the two states in J/atom? Calculate the wavelength, λ, (in nanometers) that corresponds to $\Delta \mathrm{E}$.
b) In fireworks displays, Mg is oxidized by KClO_{4} giving rise to white flashes. One product of the reaction is KCl . Write a balanced equation for the reaction.
c) Given that the angular function of an orbital is proportional to $\cos ^{2} \theta$, determine the orientation of the orbital.

Question Two

a) Manganese is found as MnO_{2} in deep ocean deposits.
(i) Depict the electron configuration of this element using the noble gas notation and an orbital box diagram
(ii) Using an orbital gas diagram, show the valence electrons for Mn^{4+}.
(iii) Is Mn^{4+} paramagnetic? Explain your answer.
b) Answer the questions below about the elements A and B, which have the ground state electron configurations shown.

$$
A=[K r] 5 s^{2} \quad B=[K r] 4 d^{10} 5 s^{2} 5 p^{5}
$$

i) Is element A a metal, nonmetal or metalloid? What about element B?
ii) Which element has the greater ionization energy?
iii) Which element has a larger ionization energy?
iv) Which element has the more negative electron attachment enthalpy?
v) Which is more likely to form a cation?
vi) Which is a likely formula for a compound formed between A and B ?
c) Calculate the effective nuclear charge, Z^{*}, for an outermost electron in atoms O, F and Ne. Relate Z^{*} values to the expected trend in their relative atomic radii and first ionization energies.

Question Three

a) For each of the molecules or ions below, draw a Lewis structure and determine the formal charge on each atom.
i) $\mathrm{NO}_{2}{ }^{+}$
ii) $\mathrm{N}_{2} \mathrm{H}_{4}$
b) Draw Lewis structures for each of the following molecules or ions. Describe the electron pair geometry, molecular geometry and the nature of hybridization around the central atom.

$$
\text { i) } \quad \mathrm{ClF}_{3} \quad \text { ii) } \mathrm{ClF}_{5}
$$

c) Consider the molecular species $\mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{+}$and $\mathrm{N}_{2}{ }^{-}$. Using molecular orbital theory, compare these species with regard to their i) magnetic properties, ii) bond orders, and iii) bond lengths and bond strengths.

Question Four

a) Ethanol, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$, and dimethyl ether, $\mathrm{CH}_{3} \mathrm{OCH}_{3}$, have the same molecular formula but a different arrangement of atoms. Predict which of these compounds has the higher boiling point. Use suitable diagrams to illustrate your answer.
b) Give a sketch of the Born-Haber cycle for the formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ (s) from its constituent elements in their standard states.
[8]
c) Silicon and carbon have the same solid-state crystal structure. However, diamond is an insulator and silicon is a semiconductor. Explain why there is a difference.
d) Aluminum has a density of $2.699 \mathrm{~g} / \mathrm{cm}^{3}$, and the atoms are placed in a face-centered cubic crystal lattice. What is the radius of an aluminium atom?

Question Five

a) Give the formulas and Lewis structures of nitrogen oxides corresponding to the oxidation states $+\mathrm{II},+\mathrm{III},+\mathrm{IV}$ and +V .
[10]
b) One way to prevent any SO_{2} from reaching the atmosphere is to scrub the exhaust gases with slaked lime, $\mathrm{Ca}(\mathrm{OH})_{2}$, followed by oxidation of the resulting sulphite to sulphate. Give the balanced reactions involved in the process.
c) Give balanced chemical equations depicting the reactions of oxides with water to form the following acids:
i) $\quad \mathrm{H}_{3} \mathrm{PO}_{4}$
ii) HNO_{3}
iii) $\mathrm{H}_{2} \mathrm{SO}_{4} \quad$ iV) $\mathrm{H}_{2} \mathrm{CO}_{3}$
[12]

Question Six

a) Consider the halides $\mathrm{BCl}_{3}, \mathrm{AlCl}_{3}, \mathrm{CCl}_{4}, \mathrm{SiCl}_{4}, \mathrm{SnCl}_{4}, \mathrm{PbCl}_{4}$.
i) Name each of the halides
ii) Briefly describe the chemical reactions, if any, which take place when these halides are mixed with water. If appropriate, each case should be accompanied by a balanced chemical reaction.
b) Aluminium and beryllium are examples of two elements that exhibit a diagonal similarity relationship. Two of their similarities are that they form similar carbides and that both of their oxides are amphoteric. lllustrate the two similarities by giving balanced reactions for the following processes:
i) Reactions of carbides of Be and Al with water
ii) Reactions of oxides Be and Al with an aqueous solution of sodium hydroxide
c) With the help of suitable diagram, illustrate how pi-type atomic orbitals overlap to form two adjacent pi bonds in the allene molecule, whose structre is shown below.

[3]

PERIODIC TABLE OF THE ELEMENTS

GROUPS

*Lanthanide serles

* Actinide series

$\underset{58}{140.115}$	$\begin{array}{\|c} 140.908 \\ \mathbf{P r}_{59} \end{array}$	$\stackrel{1}{60} \mathbf{1 4 . 2 4}_{\mathbf{N d}^{24}}$	$\begin{aligned} & \mathbf{P}_{61}^{(145)} \end{aligned}$	$\mathrm{S}_{62}^{150.36}$	$\underset{63}{\stackrel{15.96}{\mathrm{Eu}_{6}}}$	$\begin{aligned} & 157.25 \\ & \mathbf{G}_{6,} \end{aligned}$	$\begin{aligned} & 159.925 \\ & \mathrm{~Tb}_{65} \end{aligned}$	$\begin{gathered} 162.50 \\ \mathbf{D y}_{66} \\ \hline \end{gathered}$	$\begin{gathered} 164.930 \\ \mathbf{H o}_{67} \end{gathered}$	$\underset{68}{\stackrel{167.26}{\mathrm{E}_{6}} .}$	$\begin{aligned} & \hline 18 \mathrm{~B} .934 \\ & \mathrm{Tm}_{69} \\ & \hline \end{aligned}$	${ }_{\substack{173.04 \\ 78}}$	$\begin{aligned} & 174.967 \\ & \mathrm{Lu}_{71} \end{aligned}$
232.038	231.036	2388.029	48	${ }^{(244)}$	[243)	(247)	(247)	(251)	(252)	(257)	${ }^{(258)}$	(259)	${ }^{(260)}$
Th	$\mathbf{P a}$	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Numbers below the symbol of the element indicales the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative alomic mass of ${ }^{12} \mathrm{C}=$ exaclly 12 () indicales the mass number of the isotope with the longest
hall-life.

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quanities, Units, and Synbols in Phystcal Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

Avogadro's number atomic mass unit charge of the electron (or proton) Faraday constant mass of the electron mass of the neutron mass of the proton Planck's constant speed of light in a vacuum standard acceleration of gravity universal gas constant

$$
=8.20578 \times 10^{-2}(\mathrm{~atm} \cdot \mathrm{~L}) /(\mathrm{mol} \cdot \mathrm{~K})
$$

$$
\begin{aligned}
& \mathrm{NA}_{\mathrm{A}}=602214 \times 10^{23} / \mathrm{mol} \\
& \mathrm{amu}-166054 \times 10^{-27} \mathrm{~kg} \\
& \mathrm{e}=\mathrm{L}=1.60218 \times 10^{-19} \mathrm{C} \\
& \mathrm{~F}^{\circ}+2.64853 \times 10^{4} \mathrm{c} / \mathrm{mol} \\
& m_{e}-2=90939 \times 10^{-31} \mathrm{~kg} \\
& m_{\mathrm{n}}{ }^{2}=1,67493 \times 10^{-27} \mathrm{~kg} \\
& m_{\mathrm{p}}=167262 \times 10^{-27} \mathrm{~kg} \\
& h+=662607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\
& \mathrm{t}=299792 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& g, \mathrm{~L}=9.80665 \mathrm{~m} / \mathrm{s}^{2} \\
& R \quad \geq 831447 \mathrm{~J} /(\mathrm{mol} \mathrm{~K})
\end{aligned}
$$

Rydberg constant $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

SI Unit Prefixes

