UNIVERSITY OF SWAZILAND FINAL EXAMINATION

TITLE OF PAPER:

Atomic Structure, Chemical Bonding and Chemistry of s- and p-Block Elements CHE221

The second s

 \mathbf{a}

COURSE CODE:

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

- There are six (6) questions. Answer any four (4) questions. Each question is worth 25 marks.
- 2. Begin the solution to each question on a new page

A periodic table and a table of constants have been provided with this examination paper.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

1

Question One

- a) Calculate the energies of the n=1 and n=2 states of the hydrogen atom in joules per atom and in kilojoules per mole. What is the difference in energy (ΔE) of the two states in J/atom? Calculate the wavelength, λ, (in nanometers) that corresponds to ΔE. [8]
- b) In fireworks displays, Mg is oxidized by KClO₄ giving rise to white flashes. One product of the reaction is KCl. Write a balanced equation for the reaction. [2]
- c) Given that the angular function of an orbital is proportional to $\cos^2\theta$, determine the orientation of the orbital.

[15]

n and a start of the second start of the secon

Question Two

- a) Manganese is found as MnO_2 in deep ocean deposits.
 - (i) Depict the electron configuration of this element using the noble gas notation and an orbital box diagram
 - (ii) Using an orbital gas diagram, show the valence electrons for Mn⁴⁺.
 - (iii) Is Mn⁴⁺ paramagnetic? Explain your answer.

[5]

b) Answer the questions below about the elements A and B, which have the ground state electron configurations shown.

 $A = [Kr]5s^2$ $B = [Kr]4d^{10}5s^25p^5$

- i) Is element A a metal, nonmetal or metalloid? What about element B?
- ii) Which element has the greater ionization energy?
- iii) Which element has a larger ionization energy?
- iv) Which element has the more negative electron attachment enthalpy?
- v) Which is more likely to form a cation?
- vi) Which is a likely formula for a compound formed between A and B?

[8]

2

Calculate the effective nuclear charge, Z*, for an outermost electron in atoms O, F and Ne. Relate Z* values to the expected trend in their relative atomic radii and first ionization energies.

[12]

Ouestion Three

a) For each of the molecules or ions below, draw a Lewis structure and determine the formal charge on each atom. [4]

i) NO₂+ ii) N₂H₄

b) Draw Lewis structures for each of the following molecules or ions. Describe the electron pair geometry, molecular geometry and the nature of hybridization around the central atom.

i) ClF₃ ii) ClF₅

c) Consider the molecular species N_2 , N_2^+ and N_2^- . Using molecular orbital theory, compare these species with regard to their i) magnetic properties, ii) bond orders, and iii) bond lengths and bond strengths.

Question Four

- Ethanol, CH₃CH₂OH, and dimethyl ether, CH₃OCH₃, have the same a) molecular formula but a different arrangement of atoms. Predict which of these compounds has the higher boiling point. Use suitable diagrams to illustrate your answer. [4]
- Give a sketch of the Born-Haber cycle for the formation of Al₂O₃(s) from b) its constituent elements in their standard states. [8]
- Silicon and carbon have the same solid-state crystal structure. However, C) diamond is an insulator and silicon is a semiconductor. Explain why there is a difference. [3]
- d) Aluminum has a density of 2.699 g/cm³, and the atoms are placed in a face-centered cubic crystal lattice. What is the radius of an aluminium atom? [10]

[11]

[10]

Question Five

- a) Give the formulas and Lewis structures of nitrogen oxides corresponding to the oxidation states +II, +III, +IV and +V. [10]
- b) One way to prevent any SO₂ from reaching the atmosphere is to scrub the exhaust gases with slaked lime, Ca(OH)₂, followed by oxidation of the resulting sulphite to sulphate. Give the balanced reactions involved in the process.
- c) Give balanced chemical equations depicting the reactions of oxides with water to form the following acids:
 - i) H_3PO_4 ii) HNO_3 iii) H_2SO_4 iV) H_2CO_3

[12]

Question Six

- a) Consider the halides BCl₃, AlCl₃, CCl₄, SiCl₄, SnCl₄, PbCl₄.
 - i) Name each of the halides
 - ii) Briefly describe the chemical reactions, if any, which take place when these halides are mixed with water. If appropriate, each case should be accompanied by a balanced chemical reaction.

[14]

- b) Aluminium and beryllium are examples of two elements that exhibit a diagonal similarity relationship. Two of their similarities are that they form similar carbides and that both of their oxides are amphoteric. Illustrate the two similarities by giving balanced reactions for the following processes:
 - i) Reactions of carbides of Be and Al with water
 - ii) Reactions of oxides Be and Al with an aqueous solution of sodium hydroxide

[8]

4

With the help of suitable diagram, illustrate how pi-type atomic orbitals overlap to form two adjacent pi bonds in the allene molecule, whose structre is shown below. à

[3]

PERIODIC TABLE OF THE ELEMENTS

GROUPS

		·····					-								****************			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17 ·	18
PERIODS	IA	liA	IIIB	IVB	VB.	VIB	VIIB		VIII		iB	IIВ	HIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.180 Ne 10
3	22.990 Na 11	^{24.305} Mg 12	35 26.982 28.0855 30.9738 32.06 35.453 39.948 g TRANSITION ELEMENTS 13 14 15 16 17 18								39.948 Ar 18							
4	39.0983 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	${{{\rm Ga}}_{{{\rm 31}}}^{69.723}}$	72.61 Ge 32	74.922 AS 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52_	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta 73	183.85 W.	186.207 Re 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.967 Au 79	200.59 Hg 80	204.383 TI 81	207:2 Pb 82,	208.980 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	(266) Une 109		•						میسیند، میں ا روز کر اور کر	
* Lanthanide	e series			140.115 Ce 58	140.908 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.925 Tb 65	162.50 Dy 66	164.930 Ho 67	167.26 Er 68	168.934 Tm 69	173.04 Yb 70	174.967 Lu 71	
** Actinide s	eries			232.038 Th	^{231.036} Pa	238.029 U	237.048 Np	(244) Pu	(243) Am	(247) Cm	(247) Bk	(251) Cf	. (252) Es	(257) Fm	(258) Md	(259) No	$\overset{(260)}{\mathbf{Lr}}$	

Pu

95

96

97

Np

U 92

٦.J

1. 61.5.11

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ^{12}C = exactly 12: () indicates the mass number of the isotope with the longest half-life.

90

91

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, pp 86-98.

101

100

102

Lr 103

99

₹ ¥

Fundamental Physical Constants (six significant figures)

the second s	
Avogadro's number	$N_{\rm A} = 6.02214 \times 10^{23}$ /mol
atomic mass unit	$amu = 1.66054 \times 10^{-27} \text{ kg}$
charge of the electron (or proton)	$e_{-} = 1.60218 \times 10^{-19} \text{ C}$
Faraday constant	$F = 9.64853 \times 10^4$ C/mol
mass of the electron	$m_e = 9.10939 \times 10^{-31} \text{ kg}$
mass of the neutron	$m_{\rm b} = 1.67493 \times 10^{-27} \rm kg$
mass of the proton	$m_{\rm p} = 1.67262 \times 10^{-27} \rm kg$
Planck's constant	$h = 6.62607 \times 10^{-34} \text{J} \cdot \text{s}$
speed of light in a vacuum	$c = 2.99792 \times 10^8 \text{ m/s}$
standard acceleration of gravity	$g \simeq = 9.80665 \text{ m/s}^2$
universal gas constant	R = 8.31447 J/(mol·K)
	$= 8.20578 \times 10^{-2} (\text{atm} \cdot \text{L})/(\text{mol} \cdot \text{K})$

Rydberg constant = 1.097 \times 10^7 \text{ m}^{-1} SI Unit Prefixes

р n µ pico- nano- micro 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶	$\begin{array}{cccc} m \leqslant & c & d \\ milli- & centi- & deci- \\ 10^{-3} & 10^{-2} & 10^{-1} \end{array}$	k M G kilo- mega- giga- 10 ³ 10 ⁶ 10 ⁹
· · · · · · · · · · · · · · · · · · ·	Conversions and Relationships	• • • • • • • • • • • • • • • • • • •
Length SI unit: meter, m 1 km = 1000 m = 0.62 mile (mi) 1 inch (in) = 2.54 cm 1 m = 1.094 yards (yd) $1 \text{ pm} = 10^{-12} \text{ m} = 0.01 \text{ Å}$	Volume SI unit: cubic meter, m ³ $1 \text{ dm}^3 = 10^{-3} \text{ m}^3$ = 1 liter (L) = 1.057 quarts (qt) $1 \text{ cm}^3 = 1 \text{ mL}$ $1 \text{ m}^3 = 35.3 \text{ ft}^3$	Pressure SI unit: pascal, Pa $1 \text{ Pa} = 1 \text{ N/m}^2$ $= 1 \text{ kg/m} \text{ s}^2$ $1 \text{ atm} = 1.01325 \times 10^5 \text{ Pa}$ = 760 torr $1 \text{ bar} = 1 \times 10^5 \text{ Pa}$
Mass SI unit: kilogram, kg $1 \text{ kg} = 10^3 \text{ g}$ = 2.205 lb $1 \text{ metric ton (t)} = 10^3 \text{ kg}$	Energy SI unit: joule, J $1 J = 1 kg \cdot m^2 / s^2$ = 1 coulomb volt (1 C·V) 1 cal = 4.184 J $1 cV = 1.602 \times 10^{-19} J$	Math relationships $\pi = 3.1416$ volume of sphere $= \frac{4}{3}\pi r^3$ volume of cylinder $= \pi r^2 h$
	Temperature SI unit: kelvin, K $O K = -273.15^{\circ}C$ mp of $H_2O = 0^{\circ}C$ (273.15 K) bp of $H_2O = 100^{\circ}C$ (373.15 K) $T (K) = T (^{\circ}C) + 273.15$ $T (^{\circ}C) = [T (^{\circ}F) - 32]_{5}^{5}$ $T (^{\circ}F) = \frac{^{\circ}{5}T}{^{\circ}T} (^{\circ}C) + 32$	