University of Swaziland

Faculty of Science and Engineering

Department of Chemistry

Main Examination 2017/2018

Title of Paper : Applied Thermodynamics

Course code
CHE 242

Time
3 hours

Instructions $\quad: \quad$ Each question is worth 25%

Answer question 1 and any other 3 questions

Data sheets are provided with this examination

Question 1-- Compulsory [25 Marks]

a) Write short notes on the following
i. Partial molar volume
ii. Raoult's Law
b) What is the approximate osmotic pressure of a 0.118 mol and $1.00 \mathrm{~g} / \mathrm{mL}$, solution of LiCl at $10.0^{\circ} \mathrm{C}$? The freezing point of this solution is $-0.415^{\circ} \mathrm{C}$.
c) Solid CaCO_{3} degenerates into CaO and CO_{2} at certain conditions, determine if this reaction will proceed under standard conditions given that $\Delta_{r} \mathrm{G}^{\circ}$ of $\mathrm{CaCO}_{3}, \mathrm{CaO}$ and CO_{2} are $-1128,-603.5$ and $-137.2 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$, respectively.
d) The analysis of gases is done under real or perfect conditions. Derive an expressions $\Delta_{r} G$ for real gases.

Question 2 [25 Marks]

a) Write short notes on the following;
i. Triple point
ii. van't Hoff factor
iii. Standard chemical potential
b) Show your understanding of colligative properties by using 2 real life examples to show the use of any two secnarios of your choice.
c) The vapour pressure of pure acctone is $4.00 \times 10^{3} \mathrm{mmHg}$. A solution is prepared by dissolving 1.00 g of a non-volatile compound sullanilamide $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}\right.$) in 10.00 g of acetone (6Hs OCOH)
i. Find the vapour pressure of accone in the solution.
ii. Given that the solution is prepared in a 200 ml contander, what is the

$1+$

Question 3 [25 Marks]

a) Write shor notes on the following;
i. Henry's law
ii. Osmotic pressure
iii. Vapour pressure lowering
b) Calculate the partial molar volume of pure liquid water when the density is given by $0,997 \mathrm{~g} / \mathrm{cm}^{3}$ at $25^{\circ} \mathrm{C}$. By how much would the molar volume change if the sample is increased by 2 g .
c) What mass of urea $\mathrm{CON}_{2} \mathrm{H}_{4}$, must be added to $450 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ to get a solution with a vapour pressure of 298 mmHg given that the vapour pressure of pure $\mathrm{H}_{2} \mathrm{O}$ is 31.8 mmHg at this temperature.
d) Derive the vapor pressure of a pressurized liquid, with an aid of diagrams where necessary.

Question 4 [25 Marks]

a) At 286 K , the osmotic pressure of a glucose solution is 9.97 atm . What is the freezing point depression (given the density of the solution is $1.12 \mathrm{~g} / \mathrm{mL}$) given that $\mathrm{K}_{\mathrm{f}}=1.86^{\circ} \mathrm{Ckg} / \mathrm{mol}$?
b) Using a rough sketch, show the important components of a phase diagram.
c) Estimate the vapour pressure of a liquid benzene at $20^{\circ} \mathrm{C}$ when its nomal boiling point is $80^{\circ} \mathrm{C}$ at a vapour pressure of is 101 kPa , given that Ara, $11=30.8 \mathrm{kJmol}$.
d) Explain how Raoults law and Henry's law are used to specity the chemical premial of a component of mixture

Question $5|25 \mathrm{Marks}|$

a) Illustrate the schematic temperature dependence of the chemical potential with temperature for the three phases of a chemical substance
b) Derive the equation for the vapor pressure lowering
c) Give brief explanation of the following observations;
i. Freezing -point constants are typically larger than boiling point constants of a solvent,
ii. There is a difference in the boiling point constants of water and benzene.
d) Derive that equation of the equilibrium constant for the generic chemical equation

$$
\begin{equation*}
a A(g)+b B(g) \rightarrow c C(g)+d D(g) \tag{7}
\end{equation*}
$$

Question 6 [25 Marks]

a) Determine the molecular formula of a compound given that when 7.85 g sample of the compound having an empirical formula $\mathrm{C}_{5} \mathrm{H}_{4}$ is dissolved in 301 g of benzene, the freezing point of the solution is $1.04^{\circ} \mathrm{C}$ below that of pure benzene. K_{f} is given by 5.12 ${ }^{\circ} \mathrm{Ckg} / \mathrm{mol}$.
b) For the chemical equation (Question 5d), derive 4 equations for the chemical potential and use them with Hess' law in find an cquation for $\Delta_{\mathrm{r}} \mathrm{G}$ (given that $\Delta \mathrm{G}=\Delta \mu)$.
c) Calculate the difference in slope of the chemical potential aganst pressure on cither side of (a) the normal freezins point of water and (b) the momad boiling point of water. Given that the densitics of ice and water at O C are 0.917 genn ${ }^{-6}$ and $1.00 \mathrm{gcm}^{-3}$ and those of water and water vapour al $100^{\circ} \mathrm{C}$ are $0.958 \mathrm{gcm}{ }^{3}$ and $0.598 \mathrm{gmm}^{-3}$, respectively. By how much dous the chomical potential of water exced that of hand water at 1.2 and and forme

