UNIVERSITY OF SWAZILAND

FINAL EXAMINATION May 2018

TITLE OF PAPER:

COORDINATION CHEMISTRY

COURSE NUMBER:

TIME ALLOWED:
THREE (3) HOURS
INSTRUCTIONS: THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

a) Name the following complexes:
(i) $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(ii) $\left[\mathrm{TaF}_{8}\right]^{3-}$
[4]
b) Write formula for the following complexes:
(i) Dinitratotetraaminecobalt(III) sulphate
(ii) Trihydridotris(triphenylphosphine)ruthenium(III)
(iii) μ-hydroxobis[pentaamminechromium(III)] chloride
[6]
c) Show with drawings the enantiomorphs (i.e., optical isomers) of the "octahedral" complexes given below, where L-L is a bidentate ligand and X is a monodentate ligand.
i) $M(L-L)_{2} X_{2} \quad$ ii) $\quad M(L-L)_{3}$
[8]
d) Show how the experimental determination of the number of geometric isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$would enable you to demonstrate that the coordination geometry is octahedral and not trigonal prismatic
[7]

Question Two

a) With the help of suitable diagrams, explain how phosphines $\left(R_{3} P\right)$ and phosphine oxides $\left(R_{3} P=O\right)$ differ considerably in the way they function as ligands
b) Predict whether the equilibrium constant for each of the following reactions is expected to favour the forward reaction or the reverse reaction. Explain.
i) $\mathrm{Cdl}_{2}(\mathrm{~s})+\mathrm{CaF}_{2}$ (s) $\rightleftharpoons \mathrm{CdF}_{2}(\mathrm{~s})+\mathrm{Cal}_{2}(\mathrm{~s})$
ii) $\mathrm{Cal}_{2}(\mathrm{aq})+\mathrm{Cu}_{2} \mathrm{O}$ (s) $=\mathrm{CaO}$ (s) $+2 \mathrm{Cul}(\mathrm{s})$
iii) $\mathrm{HgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})=\mathrm{HgS}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq})$
c) Give two examples, together with Lewis strucures, of each of the following:
i) Monodentate ligands with oxygen as the donor atom
ii) Monodentate ligands with nitrogen as the donor atom
iii) Chelating ligands
iv) Macrocyclic ligands containing at least four N donor atoms
v) Crown ether ligands
d) Consider a ligand L whose structure is shown below.

Given that the formula of the complex is $[\mathrm{Cu}(\mathrm{CN})(\mathrm{L})]$, draw the structure of the complex.

Question Three

a) Which member of each pair would you expect to be more stable? Explain your answer:
i) $\left[\mathrm{PtCl}_{4}\right]^{2-}$ or $\left[\mathrm{PtF}_{4}\right]^{2-}$
ii) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ or $\left[\mathrm{Al}\left(\mathrm{PR}_{3}\right)_{6}\right]^{3+}$
iii) $\mathrm{Me}_{3} \mathrm{~B} \cdot \mathrm{PMe}_{3}$ or $\mathrm{Me}_{3} \mathrm{~B} \cdot \mathrm{PC}_{6} \mathrm{H}_{11}, \mathrm{C}_{6} \mathrm{H}_{11}=$ cyclohexyl radical
b) The following species have coordination numbers that are different from the ones suggested by their formulas. For each of the species, draw the structure that gives rise to the correct coordination number (given).
i) $\left.\left[\mathrm{CuCl}_{3}\right]^{\circ}, \mathrm{CN}=4\right)$
ii) $\left[\mathrm{PtCl}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+} \quad \mathrm{CN}=4$
iii) $\mathrm{CrF}_{5}, \mathrm{CN}=6$
b) Calculate the CFSE for each of the two complexes, $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$. Justify your assumptions of high-spin or low-spin in each case.
[7]
c) Classify each of the following species as pi-acceptor or pi-donor ligands. For each case use suitable orbital diagrams to illustrate how π bonding between the ligand and a Lewis acid takes place.
i) N^{3-}, nitride
ii) CO , carbonyl ligand
[6]

Question Four

a) Copper(II) complexes are typically blue with one visible absorption band in their electronic spectra whereas copper(1) complexes are generally colourless. Explain. Assign spectroscopic labels to the states involved in the transition for an octahedral Cu^{2+} complex. Your answer should include electronic configurations of $\mathrm{Cu}(\mathrm{I})$ and $\mathrm{Cu}(\mathrm{II})$ ions.
[10]
b) Aqueous solutions of $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3 .}$ show absorptions at 17400 , and $23600 \mathrm{~cm}^{-1}$ and a third band which occurs well into the ultraviolet. Use a suitable Tanabe-Sugano diagram to estimate values of B and Δ_{0} for the complex.
c) Complexes $\left[\mathrm{NiCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ are paramagnetic and diamagnetic, respectively. What does this tell you about their structures? With the help of the diagram given below, explair how you arrive at your answer.

Question Five

a) The pentacyanocobaltate(II) ion, $\left[\mathrm{Co}(\mathrm{CN})_{5}\right]^{3-}$, is a catalyst for the conversion of $\left[\mathrm{Co}(\mathrm{CN})_{5}-\mathrm{NCS}^{3-}\right.$ (where NCS^{-}is N -bonded) to $\left[\mathrm{Co}(\mathrm{CN})_{5}-\mathrm{SCN}\right]^{3-}$ (where NCS^{-}is S^{-} bonded) by an inner-sphere electron transfer mechanism. Show all the necessary steps for this reaction.
[10]
b) Consider intensities of absorption bands for isomers of a transition metal complex. Two isomers of an octahedral Co (III) complex, $\mathrm{ML}_{4} \mathrm{X}_{2}$, believed to be cis- and trans-isomers A and B respectively, give the following spectral features. Each of them gives two absorption bands in the visible region. The two bands of isomer A are symmetrical and poorly resolved with molar absorptivity $\varepsilon=60-80$. Those of isomer B are of much lower intensity and well resolved. Draw structures of the two isomers and explain the differences in their spectral features.
c) Balance the following reactions:
i) $\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$ (concd) \rightarrow
ii) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{HCl}(\mathrm{g}) \rightarrow$
iii) $\mathrm{Cr}(\mathrm{s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow$
iv) $W(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow$

Question Six

a) Consider the elements $\mathrm{Sc}, \mathrm{Cr}, \mathrm{Mn}$ and Fe
i) Write the electron configuration for each of the elements [
ii) Give the group oxidation number for each element
iii) Briefly, discuss the stability of group oxidation states for these elements.
iv) Titanium(IV) halides, $\mathrm{TiX}_{4}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, 1)$ have all been prepared. On the other hand, for manganese (IV), only MnF_{4} has been prepared; preparation of the rest ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) has been unsuccessful. Explain.
[5]
b) Consider a solution containing the followine ions: $\mathrm{Hg}^{2+}(\mathrm{aq}), \mathrm{Cu}^{+}(\mathrm{aq}), \mathrm{Cr}^{3+}(\mathrm{aq})$, and $\mathrm{Fe}^{3+}(\mathrm{aq})$. Give the resulting reaction equations (one for each) upon addition of an aqueous basic solution of sodium sulphide, $\mathrm{Na}_{2} \mathrm{~S}$. [Note: An aqueous basic solution of a sulphide contains the ions $\mathrm{OH}^{-}(\mathrm{aq})$ and $\mathrm{HS}^{-}(\mathrm{aq})$]
END
OF
EXAMINATION

1. d^{2} with $C=4.42 B$
d^{2}

2. d^{3} with $C=4.5 B$

3. d^{4} with $C=4.61 B$

4. d^{5} with $C=4.477 B$

PERIODIC TABLE OF THE ELEMENTS

GROUPS

PERIODS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	IA	IIA	!11	ive	vв	vib	VIIE	vill			${ }_{\text {IB }}$	IIE	IIIA	IVA	VA	VIa	VIIA	VIIIA
1	$\stackrel{1.008}{H}$																	$\begin{aligned} & 4.003 \\ & \mathrm{He} \end{aligned}$
2	$\stackrel{6.941}{\mathrm{Li}}$	$\underset{4}{9.012}$	TRANSITION ELEMENTS										$\begin{gathered} 10.811 \\ \mathbf{B} \\ 5 \end{gathered}$	$\stackrel{12.011}{C}_{6}^{12}$	$\begin{gathered} 14.007 \\ \mathbf{N}_{7} \end{gathered}$	$\stackrel{15.999}{\mathbf{B}_{8}^{2}}$	$\begin{gathered} 18.998 \\ \mathbf{F} \\ 9 \end{gathered}$	$\begin{aligned} & \hline 20.180 \\ & \mathrm{Ne}_{10}^{20} \end{aligned}$
3	${\underset{11}{22.990}}_{\mathrm{Na}_{11}}$	$\begin{aligned} & \stackrel{2}{24} .305_{M_{12} g} \end{aligned}$											$\begin{gathered} 26.982 \\ { }_{13}^{21} \end{gathered}$	$\begin{gathered} 28.0855 \\ \text { Si } \\ 14 \end{gathered}$	$\begin{gathered} 30.9738 \\ \mathbf{P}_{15} \end{gathered}$	$\begin{gathered} \frac{3206}{S_{16}^{206}} \end{gathered}$	$\begin{gathered} { }^{35.453} \\ { }_{17} \end{gathered}$	$\stackrel{\substack{39.948 \\ \hline 18 \\ \hline}}{ }$
4	$\begin{array}{\|c} \hline 39.0883 \\ \mathbf{K}_{19} \end{array}$	$\begin{gathered} \hline 40.078 \\ \hline \mathbf{C a} \\ \hline \end{gathered}$		$\begin{gathered} 47,88 \\ { }_{22}{ }_{22} \\ \hline \end{gathered}$	$\begin{gathered} 50: 9415 \\ y_{23} \end{gathered}$	$\begin{gathered} 51.996 \\ \underset{24}{5} \\ \hline \end{gathered}$	$\begin{aligned} & 54.938 \\ & { }_{25}^{54} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} 55.347 \\ \text { Fe } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 58.933 \\ \text { Co } \\ \hline 27 \end{array}$	$\underset{\substack{58.69 \\ \underset{28}{5 i}}}{\substack{0}}$	$\begin{aligned} & \hline 63.546 \\ & \mathrm{Cu}_{29}^{63} \end{aligned}$	$\begin{gathered} 65.39 \\ \mathbf{Z}_{30} \end{gathered}$	$\begin{gathered} \text { 69.723 } \\ \mathbf{G a} \end{gathered}$	$\begin{aligned} & 72.61 \\ & \text { Ge } \\ & 32 \end{aligned}$	$\begin{gathered} 74.922 \\ \text { A5 } \\ \hline 33 \end{gathered}$	$\begin{aligned} & 78.96 \\ & \begin{array}{c} \text { Se } \\ 34 \end{array} \end{aligned}$	$\begin{array}{\|c} \hline 7.9 .94 \\ \mathbf{B r}_{35} \\ \hline \end{array}$	$\underset{36}{\underset{38}{83.80}}$
5	$\begin{array}{\|c} \hline 85.468 \\ \text { Rb } \\ 37 \\ \hline \end{array}$	$\begin{gathered} 87.62 \\ \hline 88 \\ 38 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 88.906 \\ \hline \\ \hline \end{array}$	$\begin{gathered} 91.224 \\ \mathbf{Z 2} \\ 40 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 92.9064 \\ \mathrm{Nb}_{41} \\ \hline \end{array}$	$\begin{gathered} 95.94 \\ \mathrm{Mo} \\ \hline 42 \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 98.907 \\ \text { Tc } \\ \hline 43 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 101.07 \\ \text { Ru } \\ 44 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 102.906 \\ \text { Rh } \\ 45 \\ \hline \end{array}$	$\begin{gathered} 106.42 \\ { }_{46}^{12} \end{gathered}$	$\begin{array}{\|c} \hline 107.868 \\ \hline \mathrm{Ag}_{47} \\ \hline \end{array}$	${\underset{48}{112.41}}_{1+d}$	$\begin{gathered} 14.82 \\ \ln _{49} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 18.71 \\ & \text { Sn } \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 121.75 \\ & \mathrm{Sb} \\ & \mathrm{si} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 127.60 \\ \mathrm{Te} \\ 52 \\ \hline \end{array}$	$\begin{array}{\|c} 126.904 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & 131.29 \\ & \begin{array}{l} \text { Xe } \\ 54 \end{array} \end{aligned}$
6	$\begin{array}{\|c} 132.005 \\ \mathrm{Cs} \\ 55 \end{array}$	$\begin{array}{\|c} \hline 137.33 \\ \mathbf{B a} \\ 56 \end{array}$	$\begin{gathered} 138.906 \\ * \mathrm{La}_{57} \end{gathered}$	$\begin{gathered} { }_{72}^{178.49} \\ \hline 7 \mathrm{f} \end{gathered}$	$\begin{array}{\|c\|} \hline 180.948 \\ T_{73} \end{array}$	$\begin{aligned} & \hline{ }_{74}^{183.85} \\ & 74 \end{aligned}$	$\begin{gathered} 188.207 \\ \mathrm{Re}_{75} \end{gathered}$	$\begin{gathered} 190.2 \\ { }_{76} \end{gathered}$	$\begin{array}{\|l\|l\|} \hline 192.22 \\ \hline{ }_{7} \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 195.08 \\ { }_{78} \end{array}{ }^{28} \end{aligned}$	$\begin{array}{\|c\|} \hline 19.967 \\ \text { Au }_{79} \end{array}$	$\stackrel{\substack{20.59 \\ \mathbf{H g} \\ \hline 80 \\ \hline}}{ }$	$\begin{array}{\|c\|} \hline 204.383 \\ \text { T11 } \\ 81 \end{array}$	${\underset{82}{207.2}}_{\mathbf{P b}^{2}}$	$\left\|\begin{array}{\|c} 208.588 \\ \mathbf{B i}_{83} \end{array}\right\|$	$\begin{gathered} \left(\begin{array}{c} (209) \\ \mathbf{P O}_{8} \end{array}\right. \\ \hline \end{gathered}$	$\begin{aligned} & (210) \\ & { }^{210)} \\ & 85 \\ & \hline \end{aligned}$	$\underset{86}{\substack{122) \\ \text { Rn }}}$
7		$\underset{\substack{226.025 \\ \text { Ra }}}{\text { di }}$	$\begin{gathered} (227) \\ * * A c \\ 89 \end{gathered}$	$\begin{aligned} & (261) \\ & { }_{104}^{(0)} \\ & \hline \end{aligned}$	$\stackrel{\substack{(262) \\ \hline 105 \\ \hline \\ \hline}}{ }$	$\underset{106}{(263)}$	$\begin{gathered} \stackrel{2(262)}{U_{107}} \\ U_{107} \end{gathered}$	$\begin{array}{\|c} (265) \\ \text { Uno }^{(208} \\ \hline \end{array}$	$\begin{array}{\|c} \hline(266) \\ \text { Une } \\ \hline 109 \end{array}$									

Lanthanide series

* Actinide series

$\begin{array}{\|c} \begin{array}{l} 140.115 \\ \mathrm{Ce}_{58} \end{array} \\ \hline \end{array}$		144.24 N 60	$\begin{array}{\|c\|} \hline(145) \\ \mathbf{P}_{61} \\ \hline \end{array}$	${\stackrel{S}{S_{62}^{150.36}}}_{150}$		$\begin{gathered} 157.25 \\ \mathrm{Gd}_{64} \end{gathered}$	$\begin{array}{\|c\|} \hline 15 \mathrm{P} .925 \\ \mathrm{~Tb} \\ \hline 65 \\ \hline \end{array}$	$\begin{gathered} 162.50 \\ \text { Dy } \\ 66 \\ \hline \end{gathered}$		$\underset{\substack{\text { Er }}}{\substack{167.26 \\ \text { Er }}}$	$\begin{gathered} \hline 16 \mathrm{P} .934 \\ \mathrm{Tm} \\ \hline 69 \end{gathered}$	${ }_{70}^{173.04}$	
${ }^{232.038}$	${ }^{231.036}$	238.029	${ }^{237.048}$	(244)	${ }^{(243)}$	${ }^{(247)}$	[247)	(251)	(252)	(257)	258)	${ }^{(259)}$	${ }^{\text {(220) }}$
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Numbers below the symool of the elemert indicates the atomic
umbers. Atomic masses, above the symool of the element, are
oased on the assigned relative atomic mass of ${ }^{12} \mathrm{C}=$ exactly 12 ;
() indicates the mass number of the isolope with the longest
talinie

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988 pp 86-98.

TABLE 6-9

Hard bases	Bordertine bases	Soft bres
		I^{-}
$\left.\mathrm{P}^{-},(\mathrm{Cl})^{-}\right)$	$\mathrm{Br}{ }^{-}$	1
$\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{O}^{2-}$		$\mathrm{H}_{2} \mathrm{~S}, \mathrm{HS}^{-}{ }^{-} \mathrm{S}^{2 \cdots}$
$\mathrm{ROH}, \mathrm{RO}^{-}, \mathrm{R}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{COO}^{-}$		RSH, RS ${ }^{-}, \mathrm{R}_{2} \mathrm{~S}$
$\mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$	$\mathrm{NO}_{2}^{-}, \mathrm{N}_{3}$	$\mathrm{SCN}^{-}, \mathrm{CN}{ }^{-1} \mathrm{RNC}, \mathrm{CO}$
$\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}$	SO_{3}^{2-}	$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
$\mathrm{NH}_{3}, \mathrm{RNH}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}, \mathrm{~N}_{3}$	$\begin{aligned} & \mathrm{R}_{3} \mathrm{P},(\mathrm{RO})_{3} \mathrm{P}, \mathrm{R}_{4} \mathrm{~A} \\ & \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{6} \end{aligned}$

Source: Adapted from R. G. Fearson, J. Chem. Educ., 1968, 45, 581.

TABLE 6. 10
Hard and soft acids

Hard acids	Borderine acids	Soft acids
$\mathrm{H}^{*}, \mathrm{Li}^{+}, \mathrm{Na}^{*}, \mathrm{~K}^{*}$	$\mathrm{Fe}^{2+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zu}^{2+}$	$\operatorname{Cor}(\mathrm{CN})_{5}^{3 \cdots}, \mathrm{Pd}^{2+}, \mathrm{Pt}^{2+}, \mathrm{Pt}^{4+}$
$\mathrm{Be}^{2+}, \mathrm{Mg}^{21}, \mathrm{Ca}^{2,}, \mathrm{Sr}^{2-1}$		
$\mathrm{BF}_{3}, \mathrm{BCl}_{3}, \mathrm{~B}(\mathrm{OR})_{3}$	$\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$	$\mathrm{BH}_{3}, \mathrm{TH}+\mathrm{T}\left(\mathrm{CH}_{3}\right)_{4}$
$\mathrm{Sc}^{3+}, \mathrm{Ga}^{3+}, \mathrm{Cn}^{3+}, \mathrm{La}^{3+}$	GaH_{3}	
$\mathrm{Cr}^{3+}, \mathrm{Mn}^{2+4}, \mathrm{Fe}^{3+}, \mathrm{Co}^{3+}$	$\mathrm{RH}^{3+}, \mathrm{H}^{3+4}, \mathrm{Ru}^{3+}, \mathrm{Os}^{2+}$	$\begin{aligned} & \mathrm{Cu}, \mathrm{Ag}^{+}, \mathrm{Au}^{+}, \mathrm{Cr}^{2+}, \mathrm{Hg}^{+} \\ & \mathrm{Hg}^{2+}, \mathrm{CH}_{3} \mathrm{Hg}^{+} \end{aligned}$
$\mathrm{CO}_{2}, \mathrm{RCO}^{+}, \mathrm{CH}_{3} \mathrm{Sn}^{3+},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Sn}^{2+}$	$\mathrm{R}_{2} \mathrm{C}^{+}, \mathrm{C}_{6} \mathrm{H}_{5}^{+}, \mathrm{Sn}^{2+}, \mathrm{Pb}^{2+}$	CH_{2}, carbenes
$\mathrm{N}^{3}, \mathrm{RPO}_{2}^{+}, \mathrm{ROPO}_{2}^{+}, \mathrm{As}^{3+}$	$\mathrm{NO}^{+}, \mathrm{Sb}^{3+}, \mathrm{Bi}^{++}$	
$\mathrm{SO}_{3}, \mathrm{RSO}_{2}^{+}, \mathrm{ROSO}_{2}^{+}$	SO_{2}	
Ions with oxidation		$\mathrm{Br}_{2}, \mathrm{I}_{2}$
states of 4 or higher		Metals with zero oxidation
HX (hydrogen-bonding molecules)		oxidation state
		T acceptors:
		timitrobenzene,
		choroant,
		quinones,
		tetracyanoethylene, etc.

[^0]| PHYSICAL CONSTANTS | | | |
| :---: | :---: | :---: | :---: |
| | Permittivity of a vacuum | c_{0} | $2.99792458 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}$ |
| \% | | ϵ_{0} | $8.854187816 \times 10^{-12} \mathrm{Fm}^{1}$ |
| | | $4 \pi \epsilon_{0}$ | $1.11264 \times 10^{10} \mathrm{c}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$ |
| | Planck constant | h | $6.6260755(40) \times 10^{-34} \mathrm{Js}$ |
| | Elementary charge | e | $1.60217733(49) \times 10^{-19} \mathrm{C}$ |
| | Avogadro constant | $N_{\text {A }}$ | $6.0221367(36) \times 10^{23} \mathrm{~mol}^{1}$ |
| | Boltzmann constant | k | $1.380658(12) \times 10^{23} \mathrm{~J} \mathrm{~K}^{-1}$ |
| | Gas constant | n | $8.314510(70) \mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{1}$ |
| | Bohr radius | a_{0} | $5.29177249(24) \times 10^{-14} \mathrm{~m}$ |
| | Rydberg constant | R_{t} | $1.0973731534 ; \times 10^{7} \mathrm{~m}^{-1}$ (infinite nuclear mass) |
| | | $\checkmark R_{H}$ | $\begin{aligned} & 1.09677759, \therefore \times 10^{7} \mathrm{~m}^{-1} \\ & \text { (proton nuclear mass) } \end{aligned}$ |
| | Bohr magneton | μ_{B} | $9.2740154(31) \times 10^{-24} \mathrm{JT}^{-1}$ |
| | | π | 3.14159265359 |
| | Faraday constant | F | $9.6485309(29) \times 10^{4} \mathrm{Cmol}^{-1}$ |
| | Atomic mass unit | m_{u} | $1.6605402(10) \times 10^{-27} \mathrm{~kg}$ |
| | Mass of the electron | m_{0} | $\begin{aligned} & 9.1093897(54) \times 10^{-31} \mathrm{~kg} \\ & \text { or } \end{aligned}$ |
| | | | $5.48579903(13) \times 10^{-4} m_{u}$ |
| | Mass of the proton | m^{p} | 1.0072764701.12) m_{11} |
| | Mass of the noutron | m_{1} | $1.008664904(14) n_{i}$ |
| | Mass of the deuteron | m | $2.013553214(24) m_{u}$ |
| | Mass of the triton | m_{t} | $3.01550071(4) m_{0}$ |
| | Mass of the a-particle | $m_{\text {m }}$ | 4.001506170150) mu_{a} |

[^0]: Source: Adapted from R, G. Pearson, I, Chem. Einc, 1968, 45, 581

