UNIVERSITY OF SWAZILAND

FINAL EXAMINATION May 2018

TITLE OF PAPER:

COORDINATION CHEMISTRY

COURSE NUMBER:

TIME ALLOWED:

THREE (3) HOURS

CHE322

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS.

1

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

Question One

- a) Name the following complexes:
 - (i) $[Co(C_2O_4)_3]^{3-}$
 - (ii) [TaF₈]³⁻

[4]

[6]

[8]

b) Write formula for the following complexes:

- (i) Dinitratotetraaminecobalt(III) sulphate
- (ii) Trihydridotris(triphenylphosphine)ruthenium(III)
- (iii) µ-hydroxobis[pentaamminechromium(III)] chloride
-
- c) Show with drawings the enantiomorphs (i.e., optical isomers) of the "octahedral" complexes given below, where L-L is a bidentate ligand and X is a monodentate ligand.

i) M(L-L)₂X₂ ii) M(L-L)₃

d) Show how the experimental determination of the number of geometric isomers of $[Co(NH_3)_4Cl_2]^*$ would enable you to demonstrate that the coordination geometry is octahedral and not trigonal prismatic [7]

Question Two

- a) With the help of suitable diagrams, explain how phosphines (R_3P) and phosphine oxides $(R_3P=O)$ differ considerably in the way they function as ligands
 - [6]
- b) Predict whether the equilibrium constant for each of the following reactions is expected to favour the forward reaction or the reverse reaction. Explain.
 - i) $Cdl_2(s) + CaF_2(s) \Rightarrow CdF_2(s) + Cal_2(s)$
 - ii) $Cal_2(aq) + Cu_2O(s) \Rightarrow CaO(s) + 2Cul(s)$
 - iii) $HgCl_2(aq) + H_2S(aq) = HgS(s) + 2HCl(aq)$

[6]

2

c) Give two examples, together with Lewis strucures, of each of the following:

- i) Monodentate ligands with oxygen as the donor atom
- ii) Monodentate ligands with nitrogen as the donor atom
- iii) Chelating ligands
 - iv) Macrocyclic ligands containing at least four N donor atoms
 - v) Crown ether ligands

d) Consider a ligand L whose structure is shown below.

Given that the formula of the complex is [Cu(CN)(L)], draw the structure of the complex.

Question Three

- a) Which member of each pair would you expect to be more stable? Explain your answer:
 - i) $[PtCl_4]^{2-}$ or $[PtF_4]^{2-}$
 - ii) $[AI(H_2O)_6]^{3+}$ or $[AI(PR_3)_6]^{3+}$
 - iii) Me₃B.PMe₃ or Me₃B.PC₆H₁₁, C₆H₁₁ = cyclohexyl radical

[6]

[10]

[3]

-) The following species have coordination numbers that are different from the ones suggested by their formulas. For each of the species, draw the structure that gives rise to the correct coordination number (given).
 - i) [CuCl₃]⁻, CN=4)
 - ii) $[PtCI(NH_3)_2]^+$ CN=4
 - iii) CrF₅, CN=6

[6]

- b) Calculate the CFSE for each of the two complexes, $[Mn(H_2O)_6]^{2+}$ and $[Co(CN)_6]^{3-}$. Justify your assumptions of high-spin or low-spin in each case.
 - [7]
- c) Classify each of the following species as pi-acceptor or pi-donor ligands. For each case use suitable orbital diagrams to illustrate how π bonding between the ligand and a Lewis acid takes place.
 - i) N³⁻, nitride
 - ii) CO, carbonyl ligand

Question Four

- a) Copper(II) complexes are typically blue with one visible absorption band in their electronic spectra whereas copper(I) complexes are generally colourless. Explain.
 Assign spectroscopic labels to the states involved in the transition for an octahedral Cu²⁺ complex. Your answer should include electronic configurations of Cu(I) and Cu(II) ions.
 - [10]

[6]

b) Aqueous solutions of $[Cr(C_2O_4)_3]^{3-}$ show absorptions at 17 400, and 23 600 cm⁻¹ and a third band which occurs well into the ultraviolet. Use a suitable Tanabe-Sugano diagram to estimate values of B and Δ_o for the complex.

[10]

4

b)

c) Complexes $[NiCl_2(PPh_3)_2]$ and $[PdCl_2(PPh_3)_2]$ are paramagnetic and diamagnetic, respectively. What does this tell you about their structures? With the help of the diagram given below, explain how you arrive at your answer.

Question Five

- a) The pentacyanocobaltate(II) ion, [Co(CN)₅]³⁻, is a catalyst for the conversion of [Co(CN)₅-NCS]³⁻ (where NCS⁻ is N-bonded) to [Co(CN)₅-SCN]³⁻ (where NCS⁻ is S-bonded) by an inner-sphere electron transfer mechanism. Show all the necessary steps for this reaction.
- b) Consider intensities of absorption bands for isomers of a transition metal complex. Two isomers of an octahedral Co(III) complex, ML₄X₂, believed to be cis- and trans-isomers A and B respectively, give the following spectral features. Each of them gives two absorption bands in the visible region. The two bands of isomer A are symmetrical and poorly resolved with molar absorptivity.ε=60-80. Those of isomer B are of much lower intensity and well resolved. Draw structures of the two isomers and explain the differences in their spectral features.
- c) Balance the following reactions:
 - i) $Cr_2O_3 + H_2SO_4 (concd) \rightarrow$
 - ii) $Fe_2O_3 + HCI(g) \rightarrow$
 - iii) $Cr(s) + F_2(g) \rightarrow$
 - iv) $W(s) + F_2(g) \rightarrow$

[8]

[7]

[10]

[5]

5

Question Six

a) Consider the elements Sc, Cr, Mn and Fe

- i) Write the electron configuration for each of the elements [8]
- ii) Give the group oxidation number for each element [2]
- iii) Briefly, discuss the stability of group oxidation states for these elements.

[4]

- iv) Titanium(IV) halides, TiX₄ (X=F, CI, Br, I) have all been prepared. On the other hand, for manganese (IV), only MnF_4 has been prepared; preparation of the rest (X = CI, Br, I) has been unsuccessful. Explain. [5]
- b) Consider a solution containing the followine ions: $Hg^{2+}(aq)$, $Cu^{+}(aq)$, $Cr^{3+}(aq)$, and $Fe^{3+}(aq)$. Give the resulting reaction equations (one for each) upon addition of an aqueous <u>basic</u> solution of sodium sulphide, Na₂S. [Note: An aqueous basic solution of a sulphide contains the ions OH⁻(aq) and HS⁻(aq)]

[6]

END

0 F

EXAMINATION

2. d^3 with C = 4.5B

Ċ.

-20gr.s.

CHE322

PERIODIC TABLE OF THE ELEMENTS

GROUPS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
PERIODS	IA	_liA	IIIB	IVB	VB	VIB	VIIB		VIII		lΒ	IIВ	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1															-		4.003 He 2
2	6.941 Li 3	9.012 Be 4	1					n					10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.180 Ne 10
3	22.990 Na 11	24.305 Mg 12		TRANSITION ELEMENTS						26.982 Al 13	.28.0855 Si 14	30.9738 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18			
4	39.0983 K 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.9415 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 Zn 30	69.723 Ga 31	${{{\rm Ge}}\atop{{\rm 32}}^{72.61}}$	74.922 AS 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.9064 Nb 41	95.94 Mo 42	98.907 Tc 43	101.07 Ru 44	102.906 Rh 45	106.42 Pd 46	107.868 Ag 47	112.41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.904 I 53	131.29 Xe 54
6	132.905 CS 55	137.33 Ba 56	138.906 *La 57	178.49 Hf 72	180.948 Ta 73	183.85 W 74	186.207 Re 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.967 Au 79	200,59 Hg 80	204.383 TI 81	207.2 Pb 82	208.980 Bi 83	(209) Po 84	(210) At 85	(222) Rn 86
7	(223) Fr 87	226.025 Ra . 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107	(265) Uno 108	Une 109	••				· · · ·	· .			
* Lauthopid				140.115 Ce 58	140.908 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.925 Tb 65	${{f Dy}}_{{\bf 66}}^{{162.50}}$	164.930 HO 67	167.26 Er 68	168.934 Tm 69	173.04 Yb 70	174.967 Lu 71	

* Lanthanide series

** Actinide series

Numbers below the symbol of the element indicates the atomic numbers. Atomic masses, above the symbol of the element, are based on the assigned relative atomic mass of ^{12}C = exactly 12; () indicates the mass number of the isotope with the longest half-life.

231.036

Pa

91

232.038

Th

90

238.029

U

92

237.048

 $\mathop{Np}_{_{93}}$

(244)

Pu

94

(243)

Am

95

(247)

Cm

96

(247)

Bk

97

(251)

Ċf

98

SOURCE: International Union of Pure and Applied Chemistry, I. Mills, ed., Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Boston, 1988, рр 86-98.

(257)

Fm

100

(258)

Md

101

(259)

No

102

(260)

Lr

103

£.

(252)

Es

99

۰.

Hard bases	Borderline bases	Soft bases			
		H-			
F-, (C)-)	Br-	I			
H ₂ O, OH ⁻ , O ²⁻		H ₂ S, HS ⁻ , S ²⁻			
ROH, RO-, R2O, CH3COO-		RSH, RS-, R ₂ S			
NO ₁ , CIO ₆	NO_{2}^{-}, N_{3}^{-}	SCN-, CN-, RNC, CO			
CO_1^{2-} , SO_4^{2-} , PO_4^{3-}	SO_{3}^{2-}	$S_2O_1^{2-}$			
NH_3 , RNH_2 , N_2H_4	$C_6H_5NH_2$, C_5H_5N , N_2	R_3P_1 (RO) $_3P_1$ R_3As Coff. Coff.			

SOURCE: Adapted from R. G. Pearson, J. Chem. Educ., 1968, 45, 581.

TABLE 6-10 Hard and soft acids

Hard acids	Borderline acids	Soft acids
H ⁺ , Li ⁺ , Na ⁺ , K ⁺	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺	Co(CN) ₅ ³ , Pd ²⁺ , Pt ²⁺ , Pt ⁴⁺
BE_3 , BCl_3 , $B(OR)_3$ AP^+ Al(CH_3), AlCL, AlH.	B(CH ₃) ₃	BH ₃ , Tl+, Tl(CH ₃),
$Sc^{3+}, Ga^{3+}, In^{3+}, La^{3+}$ $Cr^{3+}, Mn^{2+}, Fe^{3+}, Co^{3+}$	GaH ₃ Rh ³⁺ , Ir ³⁺ , Ru ³⁺ , Os ²⁺	Ga(CH ₃) ₃ , GaCl ₃ , GaBr ₃ , Gal ₃ Cu ⁺ , Ag ⁺ , Au ⁺ , Cd ²⁺ , Hg ⁺
CO ₂ , RCO ⁺ , CH ₃ Sn ³⁺ , (CH ₃) ₂ Sn ²⁺ N ³⁺ , RPO ₂ ⁺ , ROPO ₂ ⁺ , As ³⁺ SO ₂ , RSO ₂ ⁺ , ROSO ₂ ⁺	R ₃ C ⁺ , C ₆ H ₅ ⁺ , Sn ^{z+} , Pb ²⁺ NO ⁺ , Sb ³⁺ , Bi ³⁺ SO.	CH_2 , carbenes
Ions with oxidation states of 4 or higher HX (hydrogen-bonding molecules)		Br ₂ , I ₂ Metals with zero oxidation oxidation state π acceptors: trinitrobenzene, choroanil, quinones, tetraevanoethylene, etc.

SOURCE: Adapted from R. G. Pearson, J. Chem. Educ., 1968, 45, 581.

·			
PHYSICAL CONSTANTS	Speed of light in a vacuum	C ₀	2.99792458 x 10 ⁸ m s ⁻¹
₹.	Permittivity of a vacuum	ϵ_0	8.854187816 x 10 ⁻¹² F m ⁻¹
		$4\pi\epsilon_0$	$1.11264 \times 10^{-10} c^2 N^{-1} m^{-2}$
	Planck constant	h	$6.6260755(40) \times 10^{-34}$ J s
· · · ·	Elementary charge	е	1.60217733(49) x 10 ⁻¹⁹ C
	Avogadro constant	N_{\star}	$6.0221367(36) \times 10^{23} \text{ mol}^{-1}$
	Boltzmann constant	k	$1.380658(12) \times 10^{-23}$ J K ⁻¹
	Gas constant	R	-8.314510(70) J K ⁻¹ mol ⁻¹
	Bohr radius	$a_{\rm c}$	$5.29[77249(24) \times 10^{-11} \text{ m}$
	Rydberg constant	Ren.	1.0973731534 $\times 10^{7} \text{ m}^{-1}$
		- Hi	(infinite nuclear mass)
		$\vee R_{\mu}$	1.09677759 (Set x 10 ⁷ m ⁻¹
			(proton nuclear mass)
	Bohr magneton	μ_{B}	9.2740154(31) x 10 ⁻²⁴ J T ⁻¹
		π	3.14159265359
1	Faraday constant	F	9.6485309(29) x 10 ⁴ Cmol ⁻¹
	Atomic mass unit	m_{μ}	1.6605402(10) x 10 ⁻²⁷ kg
	Mass of the electron	ma	9.1093897(54) x 10 ⁻³¹ kg
		v	or
			5.48579903(13) x 10 ⁻⁴ m _u
	Mass of the proton	$m_{\rm p}$	$1.007276470(12) m_{\mu}$
	Mass of the neutron	$m_{_{\rm H}}$	1.008664904(14) m ₀
	Mass of the deuteron	$m_{\rm d}$	2.013553214(24) m ₁
1 ,	Mass of the triton	$m_{\rm c}$	3.01550071(4) m _n
	Mass of the α -particle	m_{ct}	4.001506170(50) m _n
			**