UNIVERSITY OF SWAZILAND RE-SIT EXAMINATION 2017/2018

4 to 1 to 1 to

		4
TITLE OF PAPER	:	Organic Reactions & Synthesis
COURSE NUMBER	:	CHE 332
TIME	:	Three Hours
INSTRUCTIONS	:	Answer any Four Questions

This Paper contains four (4) pages.

You must not open this paper until the Chief Invigilator has granted permission to do so.

Question 1

- (a) Draw an energy diagram for each of the following;
 - (i) A one-step reaction that is fast and highly exergonic. [6]
 - (ii) The overall reaction of ethylene with HBr.
- (b) Consider the reaction below and answer the following question;

Write a complete stepwise mechanism for the reaction above. Show all intermediate structures and all electron flow with arrows.

[6]

[7]

[6]

(c) Vinyl cyclopropane reacts with HBr to yield a re-arranged alkyl bromide. Follow the flow of electrons as represented by the curved arrows. Show the structure of the carbocation in brackets and show the structure of the final product.

Question 2

(a) (i) Addition of HCl to 1-isopropenyl-1-methylcyclopentane yields 1-chloro-1,2,2-

trimethylcyclohexane. Suggest a mechanism, showing the structures of the intermediate and using curved arrows to indicate electron flow. [6]

- (ii) Draw an energy diagram for the reaction, labeling all points of interest and making sure that the relative energy levels on the diagram are consistent with the information given. [6]
- (b) (i) The reaction of hydroxide ion with chloromethane to yield methanol and chloride ion is an example of a general reaction type called nucleophilic substitution reaction:

$$HO^{-} + CH_3Cl \rightarrow CH_3OH + Cl^{-}$$

The value of ΔH° for the reaction is -75 kJ/mol, and the value of ΔS° is +54 J/(K.mol). What is the value of ΔG° (in kJ/mol) at 298 K? Is the reaction exothermic or endothermic? Is it exergonic or endergonic? [6]

(ii) The addition of water to ethylene to yield ethanol has the following thermodynamic parameters:

$$H_2C = CH_2 + H_2O \longrightarrow CH_3CH_2OH_{\Delta H^o} = -44 \text{ kJ/mol}$$

 $S^o = -0.12 \text{ kJ/(K.mol)}$
 $K_{eq} = 24$

- (a) Is the reaction exothermic or endothermic?
- (b) Is the reaction favorable (spontaneous) or unfavorable (nonspontaneous) at room temperature (298 K)?

Question 3

(a) Identify reagents a - c in the following scheme.

(b) Outline a sequence of reactions to carry out the following conversion.

[13]

7]

[12]

Question 4

(a) Give an illustrated description of an orbital structure of the carbonyl group.

[10]

(b) How is the structure of the carbonyl group related to properties and reactivity of the carbonyl compounds. Explain with examples.

[15]

Question 5

(a) Fill in the reagents a – d in the following synthesis of racemic methamphetamine from benzene. [12]

(R,S)-methampetamina

(b) Using a malonic ester synthesis method, write a sequence of reactions for the synthesis of the following carboxylic acids

Question 6

(a) Electrophilic substitution on 3-phenylpropanenitrile occurs at the *ortho* and *para* positions, but reaction with phenylpropenenitrile occurs at the meta positions. Explain the differences using resonance structures of the intermediates.

[15]

(b) Addition of HBr to 1-phenylpropene yields only (1-bromopropyl) benzene. Propose a mechanism for the reaction, and explain why none of the other regioisomer is produced.

