UNIVERSITY OF SWAZILAND

TITLE OF PAPER :Transport and Chemical Kinetics

COURSE NUMBER : CHE 341

TIME

: 3 Hours

Important Information : Each question is equivalent to $\mathbf{2 5 \%}$ of the entire exam.
: Answer questions one (1) and any other three (3) questions in this paper.
: Marks for ALL procedural calculations will be awarded.
: Start each question on a fresh page of the answer sheet.
: Diagrams must be large and clearly labelled accordingly.
: Additional material: data sheet, graph paper and the periodic table.

[^0]
Question 1 [25 marks]

a) With the aid of an equation/diagram or any other information, explain the following observations;
(i) As the ionic radius increases, the limiting molar conductivity and the ion mobility increases.
(ii) Ionic hydrodynamic radius decreases with an increase of ionic radius.
b) The rate of formation of D in the reaction $2 A+B \rightarrow 2 C+D$ is $1.6 \mathrm{M} / \mathrm{s}$. Write down the reaction rates and the rates of formation or consumption of A, B and C .
c) Derive the rate law for the decomposition of ozone, using the steady state approximation, in the reaction $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$ having the mechanism;

$$
\begin{array}{ll}
O_{3} \rightarrow O_{2}+O & k_{a} \tag{6}\\
O_{2}+O \rightarrow O_{3} & k_{a}^{\prime} \\
0+O_{3} \rightarrow O_{2}+O_{2} & k_{b}
\end{array}
$$

d) An enzyme catalysed reaction conversion of substrate at $25^{\circ} \mathrm{C}$ has Michaelis constant of $0.042 \mathrm{~mol} \mathrm{~L}{ }^{-1}$. The rate of reaction is $2.45 \times 10-4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ when the substrate concentration is $0.890 \mathrm{~mol} \mathrm{~L}^{-1}$. Calculate the maximum velocity of the enzyme action governed by the data presented above, clearly showing all steps

Question 2 [25 Marks]

a) For the perchlorate ion ClO_{4}^{-}, in water at $25^{\circ} \mathrm{C}, \lambda_{m}^{0}=67.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$,
(i) Calculate the mobility, u, of ClO_{4}^{-}in water.
(ii) Calculate the drift speed, s , of ClO_{4}^{-}in water in a field of $24 \mathrm{~V} / \mathrm{cm}$.
(iii) Calculate the diffusion coefficient of ClO_{4}^{-}in water.
b) An enzyme catalysed reaction follows Michaelis-Menten mechanism and has the rate law;
$\frac{d[P]}{d t}=\frac{k_{2}[S][E]_{0}}{K_{M}+[S]}$, where $K_{M}=\frac{k_{1}+k_{2}}{k_{1}}$
The following data relates to the catalysed reaction;

$[\mathrm{S}]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	0.00125	0.0025	0.0050	0.020
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$	2.78×10^{-5}	5.00×10^{-5}	8.33×10^{-5}	1.67×10^{-4}

Given that the enzyme concentration is 2.3 nM . Calculate;
(i) The maximum rate
(ii) The Michaelis constant
(iii) k_{2}
(iv) The catalytic efficiency.
c) Give an equation for the diffusion coefficient and show how it varies with the temperature and the collisional cross-section.

Question 3 [25 Marks]

a) Write short notes on the following;
(i) Chain polymerization
(ii) Mean free path (λ)
(iii)Newtonian flow
a) Given that $\mathrm{N}_{2}(\mathrm{~N}=14.01 \mathrm{~g} / \mathrm{mol})$ is in air at $25^{\circ} \mathrm{C}$ and 1 atm , and its collision crosssection is $45 \mathrm{~cm}^{2}$,
(i) Determine the number of collisions N_{2} has in a second,
(ii) Use two methods to determine the mean free path.
b) For the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$, the following data has been obtained;

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	25	35	45	55	65
$\mathrm{k}\left(\mathrm{s}^{-1}\right)$	1.72×10^{-5}	6.55×10^{-5}	24.95×10^{-5}	75×10^{-5}	240×10^{-5}

Calculate the activation energy and the pre-exponential factor for this reaction [10].

Question 4 [25 Marks]

a) The rate constant for the first order decomposition of a compound A in the reaction $A \rightarrow P$ is $\mathrm{k}=2.78 \times 105 \mathrm{~s}-1$ at $25^{\circ} \mathrm{C}$. If the initial pressure is 32.1 kPa , calculate;
(i) The half-life of A
(ii) The pressure, 10 seconds after the initiation of the reaction.
a) Using an equation of your choice, briefly explain the pre-equilibrium approach. [5]
b) Compare and contrast between weak and strong electrolytes.
c) The alkaline hydrolysis of ethyl benzoate with varying time gave the results in the table below;

$\mathbf{t}(\mathbf{s})$	0	100	300	400	500	600	700	800
$[\mathbf{A}](\mathbf{M})$	0.05	0.0275	0.0225	0.0185	0.0160	0.0148	0.0148	0.0138

(i) Show that the reaction follows $2^{\text {nd }}$ order kinetics.
(ii) Determine the rate constant of the reaction.
(iii)Calculate the half-life.
(iv)Find the relaxation time.

Question 5 [25 Marks]

a) Compute the root mean square speed the mean speed and the most probably speed for O_{2} at 300 K .
b) At what temperature would the mean speed for H_{2} be equal to that of O_{2} at 300 K ? [4]
c) Give the law of the independent migration of ions explaining the terms.
d) Estimate the effective radius of sucrose in water at $25^{\circ} \mathrm{C}$ given the diffusion coefficient is $5.2 \times 10^{-10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ and that the viscosity of water is 1 cP .
e) Explain the purpose of a catalyst in a reaction, with an aid of a diagram.

Question 6 [25 Marks]

a) A solution of LiCl was electrolyzed in a Hittorf cell. A current of 0.77 A had been passed for two hours, the mass of LiCl in the anode compartment had decreased by 0.793 g . Calculate the transport numbers of the Li^{+}and Cl^{-}ions.
b) List the three assumptions of the Kinetic model
c) Calculate the mean free path of argon $\left(\sigma=0.36 \mathrm{~nm}^{2}\right)$ at 0.3 atm .
d) Use the kinetic theory of gases to explain how the diffusion coefficient varies wit
(i) An increase in Molar mass,
(ii) An increase in collisional cross-section
e) The charge of Mg^{2+} is twice that of Na^{+}, and from the equation $u=\frac{z e}{6 \pi \mathrm{ya}}$ one might conclude that $\mathrm{Mg}^{2+}(\mathrm{aq})$ have a much greater mobility than $\mathrm{Na}^{+}(\mathrm{aq})$. Actually, these ions have similar mobilities. Explain why.
f) Bearing in mind distinctions between the mechanisms of stepwise and chain polymerization, describe ways in which it is possible to control the molar mass of a polymer by manipulating the kinetic parameters of polymerization.

The end

Data Sheet

$$
\begin{aligned}
& p V=\frac{1}{3} n M c^{2} \\
& z=\sigma \hat{\mathrm{c}}_{r e l} \mathrm{\aleph} \\
& s=u E \\
& z=\frac{\sigma \mathcal{c}_{r e l} P}{k T} \\
& \lambda=\frac{k T}{\sigma P} \\
& Z_{w}=\frac{P}{(2 \pi m k T)^{\frac{1}{2}}} \\
& \Lambda_{\mathrm{m}}=\mathrm{K} / \mathrm{c} \\
& \Lambda_{m}=\Lambda_{m}^{0}-K \sqrt{c} \\
& \lambda=z u F
\end{aligned}
$$

General data and fundamental constants

PERIODIC TABLE OF ELEMENTS

*Lanthanide Scries
** Aclinide Scries

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isolope wilh the longest half-life.

[^0]: You are not supposed to open this paper until permission has been granted by the Chief Invigilator

