DEPARTMENT OF CHEMISTRY

- mar and the service in

UNIVERSITY OF SWAZILAND

NOVEMBER 2017 MAIN EX'AMINATION

TITLE OF PAPER	:Transport and Chemical Kinetics
COURSE NUMBER	: CHE 341
TIME	: 3 Hours
Important Information	 : Each question is equivalent to 25% of the entire exam. : Answer questions one (1) and any other three (3) questions in this paper. : Marks for <u>ALL</u> procedural calculations will be awarded.
	 Start each question on a fresh page of the answer sheet. Diagrams must be large and clearly labelled accordingly. Additional material: data sheet, graph paper and the periodic table.

You are not supposed to open this paper until permission has been granted by the Chief Invigilator

. .

Question 1 [25 marks]

- a) With the aid of an equation/diagram or any other information, explain the following observations;
 - (i) As the ionic radius increases, the limiting molar conductivity and the ion mobility increases. [4]

se was in the same a bag

- (ii) Ionic hydrodynamic radius decreases with an increase of ionic radius. [3]
- b) The rate of formation of D in the reaction $2A + B \rightarrow 2C + D$ is 1.6 M/s. Write down the reaction rates and the rates of formation or consumption of A, B and C. [4]
- c) Derive the rate law for the decomposition of ozone, using the steady state approximation, in the reaction $2O_3 \rightarrow 3O_2$ having the mechanism; [6]

$$\begin{array}{ll}
O_3 \rightarrow O_2 + 0 & k_a \\
O_2 + O \rightarrow O_3 & k'_a \\
O + O_3 \rightarrow O_2 + O_2 & k_b
\end{array}$$

d) An enzyme catalysed reaction conversion of substrate at 25°C has Michaelis constant of 0.042 mol L⁻¹. The rate of reaction is 2.45x10-4 mol L⁻¹s⁻¹ when the substrate concentration is 0.890 mol L⁻¹. Calculate the maximum velocity of the enzyme action governed by the data presented above, clearly showing all steps [8]

Question 2 [25 Marks]

- a) For the perchlorate ion ClO_4^- , in water at 25°C, $\lambda_m^0 = 67.2 \text{ Scm}^2 \text{mol}^{-1}$,
 - (i) Calculate the mobility, u, of ClO_4^- in water. [2]
 - (ii) Calculate the drift speed, s, of ClO_4^- in water in a field of 24V/cm. [2]
 - (iii)Calculate the diffusion coefficient of ClO_4^- in water. [2]
- b) An enzyme catalysed reaction follows Michaelis-Menten mechanism and has the rate law;

$$\frac{d[P]}{dt} = \frac{k_2[S][E]_0}{K_M + [S]}$$
, where $K_M = \frac{k_1 + k_2}{k_1}$

The following data relates to the catalysed reaction;

[S] (mol L ⁻¹)	0.00125	0.0025	0.0050	0.020
Rate (mol $L^{-1} s^{-1}$)	2.78x10 ⁻⁵	5.00x10 ⁻⁵	8.33x10 ⁻⁵	1.67x10 ⁻⁴

Given that the enzyme concentration is 2.3nM. Calculate;

- (i) The maximum rate
- (ii) The Michaelis constant

(iii)k₂

(iv)The catalytic efficiency.

[16]

- A The second second

c) Give an equation for the diffusion coefficient and show how it varies with the temperature and the collisional cross-section.
 [3]

Question 3 [25 Marks]

- a) Write short notes on the following;
 - (i) Chain polymerization[3](ii) Mean free path (λ)[2](iii)Newtonian flow[2]
- a) Given that N₂ (N=14.01 g/mol) is in air at 25°C and 1 atm, and its collision crosssection is 45 cm²,
 - (i) Determine the number of collisions N_2 has in a second, [4]
 - (ii) Use two methods to determine the mean free path. [4]
- b) For the decomposition of N₂O₅, the following data has been obtained;

T (°C)	25	35	45	55	65
k (s ⁻¹)	1.72x10 ⁻⁵	6.55x10 ⁻⁵	24.95x10 ⁻⁵	75x10 ⁻⁵	240x10 ⁻⁵

Calculate the activation energy and the pre-exponential factor for this reaction [10].

Question 4 [25 Marks]

- a) The rate constant for the first order decomposition of a compound A in the reaction $A \rightarrow P$ is k=2.78x105s-1 at 25°C. If the initial pressure is 32.1 kPa, calculate;
 - (i) The half-life of A
 - (ii) The pressure, 10 seconds after the initiation of the reaction. [6]
- a) Using an equation of your choice, briefly explain the pre-equilibrium approach. [5]
- b) Compare and contrast between weak and strong electrolytes. [3]
- c) The alkaline hydrolysis of ethyl benzoate with varying time gave the results in the table below;

t (s)	0	100	300	400	500	600	700	800
[A] (M)	0.05	0.0275	0.0225	0.0185	0.0160	0.0148	0.0148	0.0138

(i) Show that the reaction follows 2^{nd} order kinetics.

(ii) Determine the rate constant of the reaction.

(iii)Calculate the half-life.

(iv)Find the relaxation time.

[11]

- Alexander St.

Question 5 [25 Marks]

B

- a) Compute the root mean square speed the mean speed and the most probably speed for O₂ at 300K. [10]
- b) At what temperature would the mean speed for H_2 be equal to that of O_2 at 300K? [4]
- c) Give the law of the independent migration of ions explaining the terms. [3]
- d) Estimate the effective radius of sucrose in water at 25°C given the diffusion coefficient is $5.2 \times 10^{-10} \text{ m}^2 \text{s}^{-1}$ and that the viscosity of water is 1cP. [4]

e) Explain the purpose of a catalyst in a reaction, with an aid of a diagram. [4]

Question 6 [25 Marks]

a) A solution of LiCl was electrolyzed in a Hittorf cell. A current of 0.77 A had been passed for two hours, the mass of LiCl in the anode compartment had decreased by 0.793 g. Calculate the transport numbers of the Li⁺ and Cl⁻ ions. [6]

b) List the three assumptions of the Kinetic model . [3]

- c) Calculate the mean free path of argon ($\sigma = 0.36 nm^2$) at 0.3 atm. [3]
- d) Use the kinetic theory of gases to explain how the diffusion coefficient varies wit
 - (i) An increase in Molar mass, [2]
 - (ii) An increase in collisional cross-section . [2]
- e) The charge of Mg²⁺ is twice that of Na⁺, and from the equation $u = \frac{ze}{6\pi\eta a}$ one might conclude that Mg²⁺ (aq) have a much greater mobility than Na⁺ (aq). Actually, these ions have similar mobilities. Explain why. [4]
- f) Bearing in mind distinctions between the mechanisms of stepwise and chain polymerization, describe ways in which it is possible to control the molar mass of a polymer by manipulating the kinetic parameters of polymerization.

The end

Data Sheet

$$pV = \frac{1}{3}nMc^{2}$$

$$z = \sigma \hat{c}_{rel} \aleph$$

$$s = uE$$

$$z = \frac{\sigma c_{rel} P}{kT}$$

$$\lambda = \frac{kT}{\sigma P}$$

$$Z_{w} = \frac{P}{(2\pi m kT)^{\frac{1}{2}}}$$

$$\Lambda_{m} = K/c$$

$$\Lambda_m = \Lambda_m^0 - K\sqrt{c}$$

 $\lambda = z u F$

.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light		2.997 924 58 Ⅹ 10 ⁸ m s ⁻¹
Elementary charge	.e - , , ,	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{A}e^{i \pi t}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_k k$	8.314 51 J K ⁻¹ mol ⁻¹
Our constant		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	$6.022.14 \times 10^{23} \text{ mol}^{-1}$
Atomic mass unit	т., Ц	1.660 54 X 10 ⁻²⁷ Kg
Mass	. .	1.0000112110 115
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m,	$1.672\ 62\ X\ 10^{-27}\ Kg$
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi X 10^{-7} J s^{2} C^{-2} m^{-1}$
1		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton	• •	
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	Se	2.002 32
Bohr radius	$a_{\mu} = 4\pi \epsilon_{\mu} \hbar/m_{e} e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_r e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e} e^{4}/8h^{3}c\epsilon_{a}^{2}$	$1.097 37 \times 10^7 \mathrm{m}^{-1}$
Standard acceleration		
of free fall	g .	9.806 65 m s ⁻²
Gravitational constant	G	$6.672 59 \times 10^{-11} \text{ N m}^2 \text{ Kg}^{-2}$
		cicia do acto acima acg

Conversion factors

l cal = l eV =		joules (. 2 X 10 ⁻¹		1 erg 1 e'√/n	nolecul	e	-	1 X 10 96 485) ⁷ J 5 kJ mol	-1
Prefixes	f femto 10 ⁻¹⁵	.	n nano 10 ⁻⁹	µ micro 10 ⁻⁶	milli	c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10 ³	M mega 10⁴	G giga 10'
. 2			.*			ı	• • • • •			

.

PERIODIC TABLE OF ELEMENTS

PERIODS] 1A 1,008	2	3	4					ROUPS							_		
					5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 008 (IIIB	IVB	·VB	VIB	VIIB	1	VIIIB		1B	IIB	AIII	IVA	VA	VIA	VIIA	V(1)/
1	П								a2;``.					•,-				4,00. 11c
1	6.941	9.012	1								Atom	ic mass —	10.811	12.011	14.007	15.999	18.998	2 20.18
2	Li 3.	Be 4					, ·			•	Syn			C 6	N 7	0 8	F 9	- Ne 10
1	22.990 Na 11	24.305 Mg 12	×			TRAN	SITION	N ELEN	IENTS				26.982 Al 13	28.086 Si 14	30.974 P 15.	32.06 S 16	35,453 Cl 17	39.94 Ar 18
	19.098 JC 19	40.078 Ca 20	44.956 Sc 21	47.88 Ti 22	50.942 V 23	51.996 Cr 24	54.938 Mn 25	55.847 Fe 26	58.933 Co 27	58.69 Ni 28	63.546 Cu 29	65.39 · Zn 30	69.723 Ga 31	72.61 Ge 32	74.922 As 33	78.96 Sc 34	79.904 Br 35	83.80 Kr 36
5	5.468 Rb 37	87.62 Sr 38	88.906 Y 39	91.224 Zr 40	92.906 Nb 41	95.94 Mo 42	98.907 Tc 43	101:07 Ru 44	102.94 Rh 45	106.42 1'd 46	107.87 Ag 47	112:41 Cd 48	114.82 In 49	118.71 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.2 Xe 54
6	32.91 Cs 55	137.33 Ba 56	138.91 *La 57	178.49 Hf 72	180.95 Ta 73	183.85 YV 74	186.21 Rc 75	190.2 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi	(209) Po 84	(210) At 85	(222) Rn 86
7		226.03 Ra 88	(227) **Ac 89	(261) Rf 104	(262) Ha 105	(263) Unh 106	(262) Uns 107.	(265) Uno 108	(266) Une 109	(267) Uun 110						¥.,		
*Lant	thanid	e Series		140.12 Cc 58	140.91 Pr 59	144.24 Nd 60	(145) Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho · 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	174.97 Lu 71	
** ['] Ac	ctinide	Series	-	232.04 Th 90	231.04 Pa ⁺ 91	238.03 U 92 ·	237.05 Np 93	(244) Pu 94	(243) Am 95	(247) Cm 96	(247) Bk 97 (he long)	(251) Cf • 98	(252) Es 99	(257) Fm 100	(258) Md 101	(259) No 102	(260) Lr J03	₹.

.