DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

NOVEMBER 2017 RE-SIT EXAMINATION

TITLE OF PAPER : Transport and Chemical Kinetics

COURSE NUMBER : CHE 341

TIME : 3 Hours

Important Information : Each question is worth $\mathbf{2 5}$ marks.
: Answer questions one (1) and any other three (3) questions in this paper.
: Marks for ALL procedural calculations will be awarded.
: Start each question on a fresh page of the answer sheet.
: Diagrams must be large and clearly labelled accordingly.
: This paper contains an appendix of chemical constants.
: Additional material: data sheet and the periodic table.

[^0]
Question 1 [25 marks]

a) With an aid of a diagram, describe Newtonian flow.
b) An enzyme catalysed reaction conversion of a substance at $25^{\circ} \mathrm{C}$ has Michaelis constant of $0.042 \mathrm{~mol} \mathrm{~L}^{-1}$. The rate of reaction is $2.45 \times 10-4 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ when the substrate concentration is $0.89 \mathrm{~mol} \mathrm{~L}^{-1}$. What is the maximum velocity of this enzmolysis
c) Discuss the features, advantages and limitations of the Michaelis - Menten mechanism of enzyme action
d) Compute the root mean square speed, the mean speed and the relative mean speed for CO_{2} at 300 K .

Question 2 [25 Marks]

a) Derive the pressure of the perfect gas according to the kinetic model.
b) Discuss the physical interpretations of the diffusion coefficient (D), coefficient of viscosity (\mathfrak{y}) and coefficient of thermal conductivity (к).
c) What is the difference between a strong electrolyte and a weak electrolyte? Give examples of each.

Question 3 [25 Marks]

a) Calculate the mean free path of argon at 0.5 atm
b) List the three assumptions of the Kinetic model
c) Calculate the diffusion constant of Nitrogen at $25^{\circ} \mathrm{C}$ and

$$
\begin{array}{ll}
\text { i. } & 10.0 \mathrm{kPa}, \\
\text { ii. } & 100 \mathrm{kPa} \tag{2}
\end{array}
$$

d) Given the following; $\lambda_{m}^{0}(\mathrm{KCl})=0.0149 \mathrm{Sm} 2 \mathrm{~mol}-1, \lambda_{m}^{0}(\mathrm{NaCl})=0.0127$ and $\lambda_{m}^{0}\left(\mathrm{KNO}_{3}\right)=0.0145$, determine the conductivity of NaNO_{3} at infinite dilution. [5]
e) Derive the Ostwald dilution law for a weak electrolyte

Question 4 [25 Marks]

a) For the perchlorate ion ClO_{4}^{-}, in water at $25^{\circ} \mathrm{C}, \lambda_{m}^{0}=67.2 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
i. Calculate the mobility, u , of ClO_{4}^{-}in water
ii. Calculate the drift speed, s , of ClO_{4}^{-}in water in a field of $24 \mathrm{~V} / \mathrm{cm}$
iii. Calculate the diffusion coefficient of ClO_{4}^{-}in water
b) A solution of LiCl was electrolyzed in a Hittorf cell. A current of 0.77 A had been passed for two hours, the mass of LiCl in the anode compartment had decreased by 0.793 g . Calculate the transport numbers of the Li^{+}and Cl^{-}ions.
c) Write short notes on the following;
(i) Limiting molar conductivity.
(ii) Collision frequency.
(iii) Half-life.
d) Discuss one of the 3 ways of measuring transport numbers.

Question 5 [25 Marks]

a) A container is filled with gas x;
(i) Identify gas \mathbf{x}, by calculating it's molar mass, given that it's mean speed, $\hat{\mathbf{c}}$, is $475 \mathrm{~m} / \mathrm{s}$ at $25^{\circ} \mathrm{C}$.
(ii) Calculate the relative mean speed, $\hat{c}_{\text {rel }}$, of gas \mathbf{x} using two methods.
(iii) Given that the gas x is enclosed in a container and a pressure of 65 Torr is maintained, what is the volume of the container?
b) Account physically for the form of the diffusion equation.
c) Why is a proton less mobile in liquid ammonia than in water.

Question 6 [25 Marks]

a) Define the collision density for two different molecules A and B
[6]
b) List the properties of enzymes.
[5]
c) Write short notes on the two major classes of polymerization kinetics.
[8]
d) The conductivity of KCl at $25^{\circ} \mathrm{C}$ is $14.668 \mathrm{mS} / \mathrm{m}$ when $\mathrm{c}=1.0000 \mathrm{mmol} / \mathrm{dm}^{3}$ and $71.740 \mathrm{mS} / \mathrm{m}$ when $\mathrm{c}=5.0000 \mathrm{mmol} / \mathrm{dm}^{3}$. Determine the limiting molar conductivity and the Kohlrausch constant K .
[6]

Data Sheet

$p V=\frac{1}{3} n M c^{2}$
$z=\sigma \hat{c}_{\text {rel }}$.
$s=u E$
$z=\frac{\sigma c_{r e l} P}{k T}$
$\lambda=\frac{k T}{\sigma P}$
$Z_{w}=\frac{P}{(2 \pi m k T)^{\frac{1}{2}}}$
$\Lambda_{\mathrm{m}}=\mathrm{K} / \mathrm{c}$
$\Lambda_{m}=\Lambda_{m}^{0}-K \sqrt{c}$
$\lambda=z u F$
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\mathrm{c}=2.9979 \times 10^{8} \mathrm{~ms}^{-1}$
$\mathrm{NA}=6.022 \times 10^{23}$
$\mathrm{F}=96485.34 \mathrm{C} \mathrm{mol}^{-1}$
$\mathrm{k}=1.38065 \times 10^{-23} \mathrm{JK}-1$
electronic charge $(\mathrm{e})=1.602177 \times 10^{-19}$

General data and fundamenial constants

Quantity	Symbol	Value
Speed of light	c	$2.9979245 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	E -	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{k}$	$8.31451 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
		$\begin{aligned} & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \text { atra } \mathrm{K}^{-1} \mathrm{~mol} \\ & 6.2364 \times 10 \mathrm{~L}^{-} \text {Iorr } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
	$n=\mathrm{h} / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \cdot \mathrm{Kg}$
Mass		
electron	$\mathrm{m}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	[III	$1.67493 \times 10^{-17} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mathrm{c}^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{12} \mathrm{C}^{1} \mathrm{ma}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J}^{3} \mathrm{C}^{-1} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \uparrow / 2 \mathrm{~m}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{N}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{JT}^{-1}$
g value	g_{g}	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \Pi / m_{\mathrm{n}} \mathrm{e}^{2}$	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} \mathrm{e}^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}_{\sim}=\mathrm{m}_{\mathrm{e}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{ml} \mathrm{s}^{-2}$
Gravitational constant	G	$6.67259 \mathrm{X} 10^{-11} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=4.184$ joules (J)	1 erg	$\because=1 \times 10^{-7} \mathrm{~J}$
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule
	$=96485 \mathrm{~kJ} \mathrm{~mol} \mathrm{l}^{-1}$	

Prefixes f p i μ m. c d k. M G $\begin{array}{llllllllll}\text { femto } & \text { pico. } & \text { nano micro milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6} & 10^{9}\end{array}$

PERIODIC TABLE OF ELEMENTS

GROUPS

* Lanthanide Scrics
*** Aclinide Scries

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Cc	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Cs	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicales the mass number of the isotope wilh the longest half-life.

[^0]: You are not supposed to open this paper until permission has been granted by the chief invigilator

