UNIVERSITY OF SWAZILAND

Re-Sit EXAMINATION 2017/2018

TITLE OF PAPER: THEORY OF SPECTROSCOPY

COURSE NUMBER: CHE342

TIME: THREE (3) HOURS

INSTRUCTIONS:

This paper consists of five (5) questions in 4 pages. Answer any four (4) questions NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

QUESTION 1 [25 MARKS]

a) The technique of photoelectron spectroscopy may be used to estimate the orbital energies of molecules. Explain how this may be achieved.
b) Consider the following molecules: $\mathrm{B}_{2}, \mathrm{OF}$ and CN .
i. Give the electron configuration and bond order of each molecule
ii. State whether the molecule is paramagnetic or diamagnetic and give the number of unpaired electrons
iii. Which of these molecules would you expect to become more stable if an electron is added? If an electron is removed? In each case give a reason
c) the term symbol for particular state of an atom is quoted as follows:
i. ${ }^{0} P_{1}$

Explain why this is incorrect
d) Give term symbols for the following
i. Ground state scandium: $[\operatorname{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}$

QUESTION 2 [25 MARKS]

a) Briefly explain why the 2 s and 2 p subshells are degenerate in the H -atom but are not in an atom of two or more electrons
b) Define the quantum numbers L and S as applied to atoms, indicating the kind of values they may have. State their physical meaning in quantitative terms. Under what conditions are the L and S no longer valid as quantum numbers? State this in a sentence or two.
c) The Calcium atom has an excited state whose electron configuration is $[\mathrm{Ar}] 3 \mathrm{~d}^{1} 4 \mathrm{~s} 1$
i. Obtain the complete term symbols for this state and the ground state
ii. Discuss the possibility of a spectroscopic transition from the excited state to the ground state
d) State whether the following transition is allowed or forbidden. Provide an explanation for your answer
i. $3 d \rightarrow 2 s$ and $3 p \rightarrow 1 s$ for a hydrogen atom.

QUESTION 3 [25 MARKS]

a) The spacing between two adjacent lines in the rotational spectrum of CO is 1.15 $\times 10^{11} \mathrm{~Hz}$. The atomic masses of C and O are 12.0000 u and 15.9949 u respectively. Calculate
i. The moment of inertia of the CO molecule
[3]
ii. The internuclear distance
b) The rotational constant for $\mathrm{H}^{35} \mathrm{Cl}$ is observed to be $10.5909 / \mathrm{cm}$. What are the values of the rotational constant, B , for the $\mathrm{H}^{37} \mathrm{Cl}$ and ${ }^{2} \mathrm{D}^{35} \mathrm{Cl}$? The atomic masses are $\mathrm{H}=1.0078 \mathrm{u},{ }^{2} \mathrm{D}=2.0140 \mathrm{u}{ }^{35} \mathrm{Cl}=34.9688 \mathrm{u}$ and ${ }^{37} \mathrm{Cl}=36.9651$ [8]
c) The fundamental and first overtone of ${ }^{14} \mathrm{~N}^{16} \mathrm{O}$ are centered at $1876.06 / \mathrm{cm}$ and $3724.20 / \mathrm{cm}$, respectively. Evaluate
i. The equilibrium vibration frequency and the anharmonicity constant
ii. The exact zero point energy
iii. The force constant of the molecule
iv. The approximate bond dissociation energy of the molecule

QUESTION 4 [25 MARKS]

a) Consider the molecule $B_{2}(Z=5)$ in its ground state and determine
i. The molecular orbital electron configuration
ii. The bond order
[2]
iii. The term symbol
b) Use the electron configuration of NO and N_{2} to predict which is likely to have a shorter bond length (Atomic number Z for $N=7$ and $O=8$)
c) Define the word laser. What is the main advantage of a four laser over a three laser?
d) In the photoelectron spectrum of O_{2} using the 58.43 nm light, electrons with kinetic energies 5.63 eV and 5.55 eV are observed. What are the ionization energies of these electrons?
e) Suppose that the maximum molar absorption coefficient of a molecule containing a carbonyl group at a concentration of $1.00 \mathrm{~mol} / \mathrm{Lcm}$ near 280 nm , calculate the thickness of a sample that will result in half the intensity.

QUESTION 5 [25 MARKS]

a) Give the number of vibrational modes of the following
i. $\quad \mathrm{SO}_{2}$
ii. $\quad \mathrm{C}_{2} \mathrm{~F}_{2}$
iii. CCl_{4}
[3]
b) Sketch and name the vibrational modes of SO_{2}. Indicate which are IR and which are Raman active
c) Explain how you can use infrared and Raman spectroscopy to determine the structure of a triatomic $A B_{2}$ molecule
d) State the selection rules for rotational Raman spectroscopy
e) The pure rotational Raman spectrum of ${ }^{14} \mathrm{~N}_{2}$ shows a spacing $7.99 / \mathrm{cm}$ between adjacent rotational lines.
i. Find the value of the rotational constant B
ii. What is the spacing between the unshifted line v_{ex} and pure rotational lines closest to $v_{\text {ex }}$
iii. If 540.8 nm radiation from an Argon laser is used as the exciting radiation, find the wavelengths of the two pure rotational Raman lines nearest the unshifted lines.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	.	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-23} \mathrm{JK}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\lambda} \mathrm{k}$	$\begin{aligned} & 8.31451 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \mathrm{X}^{-1} \mathrm{am}^{3} \text { atra } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
		$6.2364 \mathrm{X}^{\text {d }}$ L Torm ${ }^{-1} \mathrm{~mol}^{-1}$
Planck constant	$\dot{\mathrm{b}}$	$6.62608 \times 10^{-34} \mathrm{Js}$
	$\hbar=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{Js}$
Avogadro constant	N_{1}	$6.02214 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m_{0}	$9.10939 \times 10^{.31} \mathrm{Kg}$
proton	m_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	mr_{a}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{-2} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J} \mathrm{~s}^{3} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
		$4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3}$
Magneton		
Bohr	$\mu_{\mathrm{a}}=\mathrm{e} \uparrow / 2 \mathrm{~m}_{\mathrm{c}}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	g_{e}	2.00232
Bohr radius	$a_{0}=4 \pi \varepsilon_{0} \beta^{\prime} / m_{e} e^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} \mathrm{e}^{2} \mathrm{c} / 2 \mathrm{~h}$	- 7.29735×10^{-3}
Rydberg constant	$R_{\infty}=m_{c} e^{4} / 8 h^{3} c \varepsilon_{0}{ }^{2}$, $1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration .		
of free fall	g	$9.80665 \mathrm{~ms} \mathrm{~s}^{-2}$
Gravitational constant	G	$6.67259 \mathrm{X} 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=4.184$ joules (J)	1 erg	$=1 \times 10^{-7} \mathrm{~J}$
$1 \mathrm{eV}=$	$1.6022 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{eV} /$ molecule

 $\begin{array}{llllllllll}\text { femto } & \text { pico. nano micto milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega } & \text { giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{5} & 10^{9}\end{array}$

PERIODIC TABLE OF ELEMENTS

() indicates the mass number of the isolope wilh the longest half-life.

