UNIVERSITY OF SWAZILAND

· •

MAIN EXAMINATION 2017/2018

TITLE OF PAPER: INTRODUCTION TO QUANTUM MECHANICS

COURSE NUMBER: CHE343

TIME: THREE (3) HOURS

INSTRUCTIONS:

•

3

This paper consists of two sections; Section A and B. Answer all question in section A and any two (2) questions in section B.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION A [50 MARKS]

- a) Outline four differences between classical and quantum mechanics
- b) What is the experimental evidence that showed that the existence of photons is not only a suggestion and that photons can behave as particles [5]

[4]

- c) State four properties of an acceptable wavefunction assuming that the potential energy is smoothly well behaved
 [4]
- d) The lowest energy electrons of a carbon nanotube can be described by the normalized wavefunction $\psi = \left(\frac{2}{L}\right)^{\frac{1}{2}} \sin\left(\frac{\pi x}{L}\right)$, where L is the length of nanotube.

What is the probability of finding the electron between x=L/4 and x=L/2? [5]

- e) Determine which of the following functions are eigenfunction of the inversion operator \hat{i} which has the effect of making the replacement x \rightarrow -x.
 - i. $x^3 kx$ [2]

iii.
$$x^2 + 3x - 1$$
 [2]

State the eigenvalue where possible.

- f) Use the Heisenberg uncertainty principle and properties of acceptable wavefunctions to explain the physical origin of the zero point energy of a particle in a box
 [4]
- g) Given that $\langle x^2 \rangle = \left(v + \frac{1}{2}\right) \frac{\hbar}{\left(mk_f\right)^{\frac{1}{2}}}$, show that the mean potential energy is given

by
$$\langle V \rangle = \frac{1}{2} \left(v + \frac{1}{2} \right) \hbar \omega$$
 [4]

h) Starting with the classical definition of angular momentum, $J_z = \pm pr$, and also

given that
$$\lambda = \frac{n}{p}$$
, derive the origin of quantized rotation [5]

i) The energy levels of a hydrogenic atom are given by the following equation:

 $E_n = -\frac{R_H h c Z^2}{n^2}$, where R_H is the Rydberg constant, Z is the nuclear charge and n = 1, 2, 3,...

i. Calculate the wavelength of a photon emitted when an electron goes from n = 3 to n = 2 in the hydrogenic atom He⁺ [4]
 ii. What is the wavenumber of the first line in the Lyman series of

[1]

- What is the wavenumber of the first line in the Lyman series of He⁺? (For Lyman series, $n_2 \rightarrow n_i$, with $n_i = 1$, $n_2 = 2$, 3... [3]
- j) The wave function for a 2s orbital of a hydrogen atom is

$$\psi_{2s} = N(2 - r/a_0)e^{-\frac{1}{2a_0}}$$
. Determine the normalization constant N. [6]

SECTION B

QUESTION 1 (25 MARKS)

Ŷ

- a) Consider a particle of mass m confined in a cubic box of edge L. The potential energy inside the box is zero and infinity outside the box.
 - i. Write the Hamiltonian for the particle inside the box [1]
 - ii. Write the Schrodinger equation for this system
 - iii. Without doing any calculations, use the solutions of the particle in a one dimensional box (given below) to write the solutions for the above Schrodinger equation and the expression for energy of the system. [4]
 - iv. What is the degeneracy of the energy level $\frac{18 h^2}{8 mL^2}$? [4]

NB: For a particle in a one dimensional box of length L, $\psi(x) = \left(\frac{2}{L}\right)^{\frac{1}{2}} \sin\left(\frac{n\pi x}{L}\right)$

where n= 1, 2, 3,... and $E_n = \frac{n^2 h^2}{8mL^2}$

- b) The harmonic oscillator may be used for a model for molecular vibrations, considering the masses connected by spring-like bonds. The molecule vibrates like a harmonic oscillator with mass equal to the reduced mass of the atoms of the molecule.
 - i. Calculate the reduced mass of an HBr molecule (atomic masses are 1.0078 u and 79.90 u for H and Br, respectively. [3]

ii. The vibrational frequency of the HBr molecule is $v = 7.944 \times 10^{13} \text{ s}^{-1}$. Find the bond force constant k_f. [4]

n se t

c) Find the most probable value(s) of x for a harmonic oscillator in its ground state,

$$\psi_0 = N e^{-ax^2}, a \text{ is a constant.}$$
[3]

d) The wavefunction of a particle rotating on a ring is given by $\psi(\phi) = \frac{1}{\sqrt{2\pi}} e^{-im_l \phi}$,

 $m_l = 0, \pm 1, \pm 2, \dots$ Calculate the expectation value of ϕ . [5]

QUESTION 2 (25 MARKS)

Ŷ

(a) Briefly explain the relationship between the Heisenberg uncertainty principle and the commutation of operators. [5]

(b) Given that
$$\hat{A} = \frac{d}{dx}$$
 and $\hat{B} = x^2$ find the commutator [\hat{A} , \hat{B}]. [5]

(c) A particle is in a state described by the function $\psi(x) = 0.632e^{2ix} + 0.775e^{-2ix}$. What is the probability that the particle will be found with momentum $2\hbar$? [4]

(d) Consider	the function $f(x) = xe^{-x^2/2}$	$-\infty \le \chi \le \infty$	
i.	Normalize f(x)		[6]
ii.	Find the average value of x		[5]

2.

QUESTION 3 [25 MARKS]

- a) For a monatomic gas, one measure of the average speed of the atoms is the root mean speed, $v_{rms} = \left\langle v^2 \right\rangle^{\frac{1}{2}} = \left(\frac{3kT}{m}\right)^{\frac{1}{2}}$, in which m is the mass of the gas atom and k is the Boltzmann constant. Use this formula and any other information to calculate the de Broglie wavelength for the xenon atoms at 100K and 500K. [6]
- b) The following data were observed in an experiment on the photoelectric effect from Potassium:

Kinetic Energy x10 ⁹ J	4.49	3.09	1.89	1.34	0.700	0.311
Wavelength,	250	300	350	400	450	500
nm						

Use the above information to determine the value of Planck's constant, workfunction and the threshold frequency of potassium. [8]

c) In an experiment, the position of an electron can be measured with an accuracy of ±0.005nm.

i. What will be the accuracy in measuring the momentum of the electron

- [3]ii. What will be the accuracy in measuring the speed of the electron? [3]d) The work-function of Pd is 4.98eV
 - i. What is the maximum kinetic energy of photons ejected from Pd when irradiated with UV light of 200nm wavelength? [2]
 - ii. What is the wavelength associated with the electron travelling at this velocity [3]

Total Marks

4

/100/

Useful Integrals

e Ster

,

1.
$$\int x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

2.
$$\int x^3 e^{-x^2} dx = 0$$

3.
$$\int_0^{\infty} x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

4.
$$\int sin\theta d\theta = -cos\theta + constant$$

5.
$$d\tau = r^2 sin\theta dr d\theta d\phi$$

6.
$$\int x^n dx = \frac{1}{a^{n+1}} \qquad n \neq -1$$

7.
$$\int_0^{2\pi} cos^2 \theta sin\theta d\theta = \frac{2}{3}$$

.

.

.1

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	, c	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{\star}e^{-1}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{\star}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	Ц	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	$1.672.62 \times 10^{-27} \text{ Kg}$
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm p} = 1/c^2 \mu_{\rm p}$	8,854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
• .	4πe.	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ,	$4\pi \times 10^{-7} \text{ J s}^{2} \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} T^2 J^{-1} m^3$
Magneton		
Bohr	$\mu_{\rm b} = e \hbar/2m_{\rm c}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_{p} = 4\pi\epsilon_{p}\hbar/m_{e}e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{\rm o} e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-}=m_{e}e^{4}/8h^{3}cs_{o}^{2}$	$1.097 \ 37 \ X \ 10^7 \ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =			l erg 1 eV/n	nolecul	e .r		1 X 1(96 48) ⁷ J 5 kJ mol	(-1
Prefixes	femto	p pico 10 ⁻¹²	micro			d deci 10 ⁻¹	k kilo 10'	M mega 10 ⁶	G giga 10 ⁹

PERIODIC TABLE OF ELEMENTS

- 	•		GROUPS															
] -	2	.3.	4	5	: 6	7	8	: 9	10	11	12	13	14	15	16	17	18
PERIÓDS	14	IIA	HIB	IVB	-VB	VIB	VIIB		VIHB	k	IB	11B	AIII	IVA	VA	VIA	VIIA	VIIIA
	1,008							· •										4,003
	Ш		· · ·						az,* .					· · ·			*	lle
	1											1.1.1				1.000	10.000	2
• • • •	6.941	9.012	•	•. •			•	• •				ic mass –		12.011	14.007	15.999	18.998	20.180
2	Li	Be		· · ·							Sy	mbol _		C ć	N	0	F 9	-Ne
	3.	4	<u> </u>					<i>.</i> .			Alon	nic No. –	▶ 5	0	.`7	8		10
	22.990	24,305							•	• *	1		26.982	28.086	1	32.06	35.453	39.948
3.	Na	Mg		· _	نه کې مور د د د د د	TRAN	ISITIO	YELEN	1ENTS			· .	Al	Si	·P	S	CI	Ar
		12		•			· · ·	. : .					13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V.	Cr	Mn ·	Fc	Co	Ni	Cu	Zn	. Ga	Ge	As	Sc	Br	Kr
	19	20	21	22	23	24	25	26	. 27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- In	Sn	Sb	Tc		Xc
	37	38	39	40	41	. 42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178,49	180,95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf 72	Ta	W	Rc 75	Os 76	Ir	Pt	Au	Hg	TI	РЬ	Bi 83	Po 84	At 85	Rn 86
	<u>55</u> 223	56 226.03	57 (227)	(261)	73 (262)	74 (263)	(262)	(265)	(266)	78 (267)	79	80 '	81	82	1.8	84	65	80
	Fr	Ra 220.03	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		•						
7	87	88	89	104	105	106	107	108	109	110		, •	• .					
L1								l		<u> </u>								
				140.12	140.91	144.24	(145)	150,36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97	
+ r				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
+L:	inthanto	le Serie	S	58	59	60	61	62	63	64	65	1) y 66	·67	68	69	70	71	
			ļ				·										<u> </u>	
**	Actinide	e Series		232.04	231.04	238.03	237.05	(244) D	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)	
	•			Th	Pa'	U	Np ·	Pu	Ám Of	Cm	Bk	Cf	Es	Fm	Md	No	Lr	•
				90	91	92	93	94	95	96	97	· 98	99	100	101	102	.103	

() indicates the mass number of the isotope with the longest half-life.