UNIVERSITY OF SWAZILAND

MAIN EXAMINATION 2017/2018

```
TITLE OF PAPER:
INTRODUCTION TO QUANTUM MECHANICS
COURSE NUMBER: CHE343
TIME: THREE (3) HOURS
```


INSTRUCTIONS:

This paper consists of two sections; Section A and B. Answer all question in section A and any two (2) questions in section B.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used
a) Outline four differences between classical and quantum mechanics
b) What is the experimental evidence that showed that the existence of photons is not only a suggestion and that photons can behave as particles
c) State four properties of an acceptable wavefunction assuming that the potential energy is smoothly well behaved
d) The lowest energy electrons of a carbon nanotube can be described by the normalized wavefunction $\psi=\left(\frac{2}{L}\right)^{\frac{1}{2}} \sin \left(\frac{\pi x}{L}\right)$, where L is the length of nanotube. What is the probability of finding the electron between $x=L \backslash 4$ and $x=L / 2$?
e) Determine which of the following functions are eigenfunction of the inversion operator \hat{i} which has the effect of making the replacement $\mathrm{x} \rightarrow$ - x .
i. $x^{3}-k x$
ii. $\operatorname{Cos} k x$
iii. $\quad x^{2}+3 x-1$

State the eigenvalue where possible.
f) Use the Heisenberg uncertainty principle and properties of acceptable wavefunctions to explain the physical origin of the zero point energy of a particle in a box
g) Given that $\left\langle x^{2}\right\rangle=\left(v+\frac{1}{2}\right) \frac{\hbar}{\left(m k_{f}\right)^{\frac{1}{2}}}$, show that the mean potential energy is given

$$
\begin{equation*}
\text { by }\langle V\rangle=\frac{1}{2}\left(v+\frac{1}{2}\right) \hbar \omega \tag{4}
\end{equation*}
$$

h) Starting with the classical definition of angular momentum, $J_{z}= \pm p r$, and also given that $\lambda=\frac{h}{p}$, derive the origin of quantized rotation
i) The energy levels of a hydrogenic atom are given by the following equation:
$E_{n}=-\frac{R_{H} h c Z^{2}}{n^{2}}$, where R_{H} is the Rydberg constant, Z is the nuclear charge and $n=$ $1,2,3, \ldots$
i. Calculate the wavelength of a photon emitted when an electron goes from $n=3$ to $n=2$ in the hydrogenic atom He^{+}
ii. What is the wavenumber of the first line in the Lyman series of He^{+}? (For Lyman series, $n_{2} \rightarrow n_{1}$, with $n_{1}=1, n_{2}=2,3 \ldots$
j) The wave function for a 2 s orbital of a hydrogen atom is

$$
\begin{equation*}
\psi_{2 s}=N\left(2-r / a_{0}\right) e^{-\frac{r}{2 a_{0}}} \text {. Determine the normalization constant } N . \tag{6}
\end{equation*}
$$

SECTION B

QUESTION 1 (25 MARKS)

a) Consider a particle of mass m confined in a cubic box of edge L. The potential energy inside the box is zero and infinity outside the box.
i. Write the Hamiltonian for the particle inside the box
ii. Write the Schrodinger equation for this system
iii. Without doing any calculations, use the solutions of the particle in a one dimensional box (given below) to write the solutions for the above Schrodinger equation and the expression for energy of the system. [4]
iv. What is the degeneracy of the energy level $\frac{18 h^{2}}{8 m L^{2}}$?

NB: For a particle in a one dimensional box of length $L, \psi(x)=\left(\frac{2}{L}\right)^{\frac{1}{2}} \sin \left(\frac{n \pi x}{L}\right)$ where $\mathrm{n}=1,2,3, \ldots$ and $E_{n}=\frac{n^{2} h^{2}}{8 m L^{2}}$
b) The harmonic oscillator may be used for a model for molecular vibrations, considering the masses connected by spring-like bonds. The molecule vibrates like a harmonic oscillator with mass equal to the reduced mass of the atoms of the molecule.
i. Calculate the reduced mass of an HBr molecule (atomic masses are 1.0078 u and 79.90 u for H and Br , respectively.
ii. The vibrational frequency of the HBr molecule is $\mathrm{v}=7.944 \times 10^{13} \mathrm{~s}^{-1}$. Find the bond force constant k_{f}.
c) Find the most probable value(s) of x for a harmonic oscillator in its ground state, $\psi_{0}=N e^{-a x^{2}}, a$ is a constant.
d) The wavefunction of a particle rotating on a ring is given by $\psi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{-i m_{1} \phi}$, $m_{l}=0, \pm 1, \pm 2, \ldots$ Calculate the expectation value of ϕ.

QUESTION 2 (25 MARKS)

(a) Briefly explain the relationship between the Heisenberg uncertainty principle and the cormmutation of operators.
(b) Given that $\hat{A}=\frac{d}{d x}$ and $\hat{B}=x^{2}$ find the commutator $[\hat{\mathrm{A}}, \hat{B}]$.
(c) A particle is in a state described by the function $\psi(\mathrm{x})=0.632 e^{2 i x}+0.775 e^{-2 i x}$. What is the probability that the particle will be found with momentum $2 \hbar$?
(d) Consider the function $f(x)=x e^{-x^{2} / 2} \quad-\infty \leq x \leq \infty$
i. \quad Normalize $f(x)$
ii. Find the average value of x

QUESTION 3 [25 MARKS]

a) For a monatomic gas, one measure of the average speed of the atoms is the root mean speed, $v_{r m s}=\left\langle v^{2}\right\rangle^{1 / 2}=\left(\frac{3 k T}{m}\right)^{\frac{1}{2}}$, in which m is the mass of the gas atom and k is the Boltzmann constant. Use this formula and any other information to calculate the de Broglie wavelength for the xenon atoms at 100 K and 500 K .
b) The following data were observed in an experiment on the photoelectric effect from Potassium:

Kinetic Energy $\times 10^{9} \mathrm{j}$	4.49	3.09	1.89	1.34	0.700	0.311
Wavelength, nm	250	300	350	400	450	500

Use the above information to determine the value of Planck's constant, workfunction and the threshold frequency of potassium.
c) In an experiment, the position of an electron can be measured with an accuracy of $\pm 0.005 \mathrm{~nm}$.
i. What will be the accuracy in measuring the momentum of the electron
ii. What will be the accuracy in measuring the speed of the electron?
d) The work-function of Pd is 4.98 eV
i. What is the maximum kinetic energy of photons ejected from Pd when irradiated with UV light of 200 nm wavelength?
ii. What is the wavelength associated with the electron travelling at this velocity

Useful Integrals

1. $\int x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
2. $\int x^{3} e^{-x^{2}} d x=0$
3. $\int_{0} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
4. $\int \sin \theta d \theta=-\cos \theta+$ constant
5. $d \tau=r^{2} \sin \theta d r d \theta d \phi$
6. $\int x^{n} d x=\frac{1}{a^{n+1}} \quad n \neq-1$
7. $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3}$

General data and fundamental constants

Quantity	Symbol	Vaiue
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	.	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$\mathrm{F}=\mathrm{N}_{\mathrm{A}} \mathrm{e}$	$9.6485 \times 10^{+} \mathrm{Cmol}^{-1}$
Boltrmann constant	k	$1.38066 \times 10^{-12} \mathrm{JK}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathbf{N}} \mathrm{k}$	$\begin{aligned} & 8.31451 \mathrm{I} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\ & 8.20578 \mathrm{X}^{-2} \mathrm{dm}^{-2} \text { atmo } \mathrm{K}^{-1} \mathrm{~mol}^{1} \end{aligned}$
		$6.2364 \times 10 \mathrm{~L}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{InOl}^{-1}$
Planck constant	$\stackrel{\text { h }}{ }$	$6.62608 \times 10^{-34} \mathrm{Js}$
	$\dagger=h / 2 \pi$	$1.05457 \times 10^{-34} \mathrm{Js}$
Avogadro constant	$\mathrm{N}_{\text {A }}$	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomio mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	m	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	m_{5}	$1.67262 \times 10^{-27} \mathrm{~K} \mathrm{~g}$
neutron	ma_{4}	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / c^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}: 2 \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-2}$
Vacuum permeability	μ_{0}	$\begin{aligned} & 4 \pi \times 10^{-7} \mathrm{~J}^{2} \mathrm{C}^{-2} \mathrm{~m}^{-1} \\ & 4 \pi \times 10^{-7} \mathrm{~T}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{3} \end{aligned}$
Magneton		
Bohr	$\mu_{\mathrm{g}}=\mathrm{e} \uparrow 1 / 2 \mathrm{~m}_{\text {c }}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\left.\mu_{\mathrm{N}}=\mathrm{e}\right\rceil / 2 \mathrm{~m}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g Yalue	g_{e}	2.00232
Bohrradius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \dagger / m m_{c} e^{2}$.	$5.29177 \times 10^{-11} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} \mathrm{e}^{2} \mathrm{c} / 2 \mathrm{~h}$	7.29735×10^{-3}
Rydberg constant	$\mathrm{Rm}_{m} \doteq m_{c} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \mathrm{c}_{\mathrm{s}}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{~ms}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{-14} \mathrm{Nm}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$$
\begin{array}{rl}
1 \mathrm{cal}=4.184 \text { joules }(\mathrm{J}) & 1 \mathrm{erg} \\
1 \mathrm{eV}=1.6022 \times 10^{-19 \mathrm{~J}} & 1 \mathrm{eV} / \text { molecule }
\end{array}=1 \times 10^{-7} \mathrm{~J} .96485 \mathrm{~kJ} \mathrm{~mol}^{-1} .
$$

Prefixes f m $\quad \mathrm{p}$ m m d m . M G $\begin{array}{llllllllll}\text { fermto pico. nano micto milli } & \text { centi } & \text { deci } & \text { kilo } & \text { mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{5} & 10^{9}\end{array}$

PERIODICTABLE OF ELEMENTS

GROUPS

${ }^{*}$ Lanthanide Scrics
** Aclinide Scrics

$\begin{gathered} 140.12 \\ \mathrm{Ce} \\ 58 \end{gathered}$	$\begin{gathered} 140.91 \\ \operatorname{Pr} \\ 59 \end{gathered}$	$\begin{gathered} 144.24 \\ \mathrm{Nd} \\ 60 \end{gathered}$	$\begin{gathered} (145) \\ \mathrm{Pm}_{61} \\ 61 \end{gathered}$	$\begin{gathered} 150.36 \\ \mathrm{Sm} \\ 62 \end{gathered}$	$\begin{gathered} 151.96 \\ \text { Cu } \\ 63 \end{gathered}$	$\begin{gathered} 157.25 \\ \mathrm{Gd} \\ 64 \end{gathered}$	$\begin{gathered} 158.93 \\ \mathrm{~Tb} \\ 65 \end{gathered}$	$\begin{gathered} 162.50 \\ D y \\ 6 G \end{gathered}$	$\begin{gathered} 164.93 \\ H 0 \\ .67 \end{gathered}$	$\begin{gathered} 167.26 \\ \mathrm{Er} \\ 68 \end{gathered}$	$\begin{gathered} 168.93 \\ \operatorname{Tm} \\ 69 \end{gathered}$	$\begin{gathered} 173.04 \\ Y \mathrm{~b} \\ 70 \end{gathered}$	$\begin{gathered} 174.97 \\ \mathrm{Lu} \\ 71 \end{gathered}$
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Us	Fm	Md ${ }^{\text {- }}$	No	Lr
90	91	92	93	94	95	96	97	- 98	99	100	101	102	107

1) indicates the mass number of the isolope with the longest half:life.
