UNIVERSITY OF SWAZILAND

Re-Sit EXAMINATION 2017/2018

TITLE OF PAPER: INTRODUCTION TO QUANTUM MECHANICS
 COURSE NUMBER: CHE343
 TIME: THREE (3) HOURS

INSTRUCTIONS:
This paper consists of two sections; Section A and B. Answer all question in section A and any two (2) questions in section B.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION A [50 MARKS]

a) Briefly outline 3 experiments that drove scientists to view that energy can be transferred orly in discrete amounts
b) Show that the operators for position and momentum do not commute
c) What are the advantages of working with normalized wavefunctions
d) Given that an O_{2} molecule is confined in one dimensional container of length 5 cm .
i. Calculate the separation between the two lowest energy levels
ii. At what value of n does the energy of the molecule reach $1 / 2 \mathrm{kT}$ at 300 K
iii. What is the separation of this level (ii above) from the one immediately below it
e) The normalized wavefunction for a particle confined to move on a circle is $\psi(\phi)=\left(\frac{1}{2 \pi}\right)^{\frac{1}{2}} e^{i m \phi}$ where $m=0, \pm 1, \pm 2, \ldots$, Determine $\langle\phi\rangle$.
f) Determine whether the angular momentum operator, expressed in cylindrical coordinates, $\left(\hat{l}_{z}=\frac{\hbar \partial}{i \partial \phi}\right)$, has the eigenfunction of the form $\psi_{m l}(\phi)=\frac{e^{i m \phi}}{(2 \pi)^{1 / 2}}$
g) The total energy eigenvalues of the hydrogen atom are given by $E_{n}=-\frac{e^{2}}{8 \pi \varepsilon_{0} a_{0} n^{2}}, n=1,2,3, \ldots$ and the three quantum numbers associated with the total energy eigenvalues are related by $n=1,2,3, \ldots ; I=0,1,2, \ldots n-1$; and $m_{l}=0$, $\pm 1, \pm 2, \pm 3, \ldots, \pm 1$. Using the notation $\psi_{n i m_{l}}$, list all eigenfunction that have the following energy eigenvalues and hence give the degeneracy of these energy levels:

$$
\begin{equation*}
\text { i. } \quad \mathrm{E}=-\frac{e^{2}}{32 \pi \varepsilon_{0} a_{0}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { ii. } \quad E=-\frac{e^{2}}{72 \pi \varepsilon_{0} a_{0}} \tag{3}
\end{equation*}
$$

h) Calculate the mean value of the radius, <r>, at which you would find an electron if the H atom wavefunction is $\psi_{210}(r, \theta, \phi)=\frac{1}{4 \sqrt{2 \pi a_{0}^{3}}} \frac{r}{a_{0}} e^{-\frac{r}{2 a_{0}}} \cos \theta$

SECTION B [50 MARKS]

QUESTION 1 (25 MARKS)

a) Explain how Einstein's introduction of quantization of energy accounted for the properties of heat capacity at low temperatures
b) In an x-ray photoelectron experiment, a photon of wavelength 121 pm ejects an electron and it emerges with speed of $5.69 \times 10^{7} \mathrm{~m} / \mathrm{s}$. Calculate the binding energy of the electron.
c) For the following operator and function, show that the function is an eigenfunction of the operator and determine the eigenvalue.

$$
\begin{array}{ll}
\frac{\text { Operator }}{d^{2}} & \text { Eigenfunction } \\
d x^{2} & -4 \tag{3}\\
& 3 \cos 2 x
\end{array}
$$

d) What is the de Broglie wavelength of an electron accelerated to 100 eV
e) A photon of radiation with a wavelength of 305 nm ejects an electron from a metal with a kinetic energy of 1.77 eV . Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
f) By evaluating the commutator, $\left[\mathrm{X}, \mathrm{P}_{\mathrm{x}}\right]$, show whether the operators for position and momentum commute.
g) Two (un-normalized) excited state wavefunctions of the hydrogen atom are
A) $\quad \psi(r)=\left(2-\frac{r}{a_{0}}\right) e^{-r / 2 a_{0}}$
B) $\quad \psi(r, \theta, \phi)=r \sin \theta \cos \phi e^{-r / 2 a_{0}}$

Show that these two functions are mutually orthogonal.
[4]

QUESTION 2 (25 MARKS)

a) A particle is in a state described by the function $\psi(x)=0.632 e^{2 i x}+0.775 e^{-}$ ${ }^{2 i x}$.What is the probability that the particle will be found with momentum $2 \hbar$ [3]
b) Consider the energy eigenvalues of a particle in a one dimensional box
$\mathrm{E}_{\mathrm{n}}=\frac{h^{2} n^{2}}{8 m L^{2}}, \quad \mathrm{n}=1,2,3, \ldots$ as a function of n, m and L.
i. By what factor do you need to change the box length L to decrease the zero point energy by a factor of 400 for a fixed value of m ?
ii. By what factor would you have to change n for fixed values of L and m to increase the energy by a factor of 400 ?
iii. By what factor would you have to increase L to have the zero point energy of an electron be equal to the zero point energy of a proton?
[4]
c) The function $\psi(x)=x\left(1-\frac{x}{L}\right)$, is an acceptable function for a particle in a one dimensional box of length L and with infinitely high walls.
i. Normalize $\psi(x)$
ii. Calculate the expectation value $<x>$

QUESTION 3 [25 MARKS]

a) The force constant of ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ molecule is $966 \mathrm{~N} / \mathrm{m}$. [Isotopic masses are ${ }^{1} \mathrm{H} 1.0078$ u and $\left.{ }^{19} \mathrm{~F} 18.9984 \mathrm{u}\right]$.
i. Calculate the zero point vibrational energy of this molecule
ii. If this amount of energy were to be converted to translational energy, how fast would the molecule be moving?
[3]
iii. Calculate the frequency of light needed to excite the molecule from the ground state to the first excited state.
b) A gas phase ${ }^{1} \mathrm{H}^{19} \mathrm{~F}$ molecule, with a bond length of 91.7 pm , rotates in a three dimensional space. Calculate the smallest quantum of energy that can be absorbed by this molecule in a rotational state.
c) Consider a one dimensional harmonic oscillator
i. Write down the expression for the energy and define all terms
ii. Assuming that the vibrations of a ${ }^{14} \mathrm{~N}_{2}$ molecule are equivalent to those of a harmonic oscillator with force constant $\mathrm{k}=2293.8 \mathrm{~N} / \mathrm{m}$, what is the zero point energy of vibration of this molecule. [Take the mass of ${ }^{14} \mathrm{~N}$ to be 14.0041 u].
iii. Calculate the wavelength of a photon needed to excite a transition between neighboring levels in the nitrogen molecule.

Useful Integrals

1. $\int x^{2} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
2. $\int x^{3} e^{-x^{2}} d x=0$
3. $\int_{0} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
4. $\int \sin \theta d \theta=-\cos \theta+$ constant
5. $d \tau=r^{2} \sin \theta d r d \theta d \phi$
6. $\int x^{n} d x=\frac{1}{a^{n+1}} \quad n \neq-1$
7. $\int_{0}^{2 \pi} \cos ^{2} \theta \sin \theta d \theta=\frac{2}{3}$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	$2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	e	$1.602177 \times 10^{-19} \mathrm{C}$
Faraday constant	$F=N_{\text {A }} \mathrm{e}$	$9.6485 \times 10^{+} \mathrm{Cmol}^{-1}$
Boltzmann constant	k	$1.38066 \times 10^{-21} \mathrm{~J} \mathrm{~K}^{-1}$
Gas constant	$\mathrm{R}=\mathrm{N}_{\mathrm{N}} \mathrm{k}$	$8.31451 \mathrm{~J} \mathrm{~K}^{1} \mathrm{~mol}^{-1}$
		$\begin{aligned} & 8.20578 \times 10^{-2} \mathrm{dm}^{3} \text { atrn } \mathrm{K}^{-1} \mathrm{~mol}^{-1} \\ & 6.2364 \mathrm{X} 10 \mathrm{~L}^{-1} \mathrm{orr} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \end{aligned}$
Planck constant	h	$6.62608 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
	$\Pi=h / 2 \pi$	$1.05457 \mathrm{X} 10^{-34} \mathrm{~J} \mathrm{~s}$
Avogadro constant	N_{A}	$6.02214 \times 10^{33} \mathrm{~mol}^{-1}$
Atomic mass unit	u	$1.66054 \times 10^{-27} \mathrm{Kg}$
Mass		
electron	$\mathrm{ml}_{\text {e }}$	$9.10939 \times 10^{-31} \mathrm{Kg}$
proton	mp_{p}	$1.67262 \times 10^{-27} \mathrm{Kg}$
neutron	min	$1.67493 \times 10^{-27} \mathrm{Kg}$
Vacuum permittivity	$\varepsilon_{0}=1 / \mathrm{c}^{2} \mu_{0}$	$8.85419 \times 10^{-12} \mathrm{~J}^{2} \mathrm{C}^{2} \mathrm{~m}^{-1}$
	$4 \pi \varepsilon_{0}$	$1.11265 \times 10^{-10} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}$
Vacuum permeability	μ_{0}	$4 \pi \times 10^{-7} \mathrm{~J}^{7} \mathrm{C}^{-2} \mathrm{~m}^{-1}$
Magneton		
Bohr	$\mu_{\mathrm{B}}=\mathrm{e} \pi / 2 \mathrm{~m}_{\text {c }}$	$9.27402 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$
nuclear	$\mu_{\mathrm{N}}=\mathrm{e} \hbar / 2 \mathrm{~m}_{\mathrm{p}}$	$5.05079 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1}$
g value	ge	2.00232
Bohr radius	$\mathrm{a}_{0}=4 \pi \varepsilon_{0} \mathrm{~h} / \mathrm{m}_{\mathrm{s}} \mathrm{e}^{2}$.	$5.29177 \times 10^{-14} \mathrm{~m}$
Fine-structure constant	$\alpha=\mu_{0} e^{2} c / 2 h$	7.29735×10^{-3}
Rydberg constant	$\mathrm{R}=\mathrm{ma}_{\mathrm{c}} \mathrm{e}^{4} / 8 \mathrm{~h}^{3} \varepsilon_{0}{ }^{2}$	$1.09737 \times 10^{7} \mathrm{~m}^{-1}$
Standard acceleration		
of free fall	g	$9.80665 \mathrm{ml}^{-2}$
Gravitational constant	G	$6.67259 \times 10^{111} \mathrm{~N} \mathrm{~m}^{2} \mathrm{Kg}^{-2}$

Conversion factors

$1 \mathrm{cal}=\quad 4.184$ joules (J)	1 erg	$=1 \times 10^{-7} \mathrm{~J}$
$1 \mathrm{eV}=$	$=1.6022 \times 10^{-19} \mathrm{~J}$	1 eV/molecule

Prefixes f p r $\quad \mathrm{f}$ m c d m M M $\begin{array}{lllllllll}\text { femto pico. nano micro milli } & \text { centi deci } & \text { kilo mega giga } \\ 10^{-15} & 10^{-12} & 10^{-9} & 10^{-6} & 10^{-3} & 10^{-2} & 10^{-1} & 10^{3} & 10^{6}\end{array}$

PERIODIC TABLE OF ELEMENTS

	1	2	3	4	5	6	7	8	19	10	11	12	13	14	15	16	17	18
pmions	1 A	11 A	1118	IVB	VB	VIB	V118	VIIIB			18	118	IIIA	IVA	VA	YIA	VIIA	VIIIA
\because	$\begin{gathered} 1.008 \\ 11 \\ 1 \\ \hline \end{gathered}$								*'					-				$\begin{gathered} 4.003 \\ 11 \mathrm{c} \\ 2 \\ \hline \end{gathered}$
2	$\begin{gathered} 6.941 \\ \mathrm{Li} \\ 3 . \end{gathered}$	$\begin{gathered} 9.012 \\ \mathrm{Be} \\ 4 \end{gathered}$									Alom	$\begin{gathered} \mathrm{c} \text { mass } \\ \text { ibol } \\ \text { ic No. } \end{gathered}$	$\begin{aligned} & 10.811 \\ & \mathrm{~B} \\ & 5 \end{aligned}$	$\begin{gathered} 12.011 \\ C \\ 6 \end{gathered}$	$\begin{gathered} 14.007 \\ \mathrm{~N} \\ \therefore 7 \end{gathered}$	$\begin{gathered} 15.999 \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 18.998 \\ \text { F } \\ 9 \end{gathered}$	$\begin{gathered} 20.180 \\ -\mathrm{Ne} \\ 10 \end{gathered}$
3	$\begin{gathered} 22.990 \\ \mathrm{Na}^{2} \\ 11 \end{gathered}$	$\begin{gathered} 24.305 \\ \mathrm{Mg} \\ 12 \end{gathered}$				TRA	ITION	ELEN	ENTS				$\begin{array}{\|c} 26: 982 \\ \text { Al } \\ 1 J \end{array}$	$\begin{gathered} 28.086 \\ S i \\ 14 \end{gathered}$	$\begin{gathered} 30.974 \\ p \\ \text { is } \end{gathered}$	$\begin{gathered} 32.06 \\ S \\ 16 \end{gathered}$	$\begin{gathered} 35.453 \\ \mathrm{CI} \\ 17 \end{gathered}$	$\begin{gathered} 39.948 \\ \mathrm{Ar} \\ 18 \end{gathered}$
4	$\begin{gathered} 39.058 \\ \mathrm{~K} \\ 19 \\ \hline \end{gathered}$	$\begin{gathered} 40.078 \\ \mathrm{Ca} \\ 20 \\ \hline \end{gathered}$	$\begin{gathered} 44.956 \\ \mathrm{Sc} \\ 21 \\ \hline \end{gathered}$	$\begin{gathered} 47.88 \\ T i \\ 22 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 50.942 \\ V \\ 23 \\ \hline \end{array}$	$\begin{gathered} 51.996 \\ \mathrm{Cr} \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 54.938 \\ \mathrm{Mn} \\ 25 \\ \hline \end{gathered}$	$\begin{gathered} 55.847 \\ 7 \mathrm{e} \\ 26 \\ \hline \end{gathered}$	$\begin{gathered} 58.933 \\ \mathrm{Co} \\ 27 \\ \hline \end{gathered}$	$\begin{gathered} 58.69 \\ \mathrm{Ni} \\ 28 \end{gathered}$	$\begin{gathered} 63.546 \\ \mathrm{Cu} \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 65.39 \\ \mathrm{Zn} \\ 30 \end{gathered}$	$\begin{gathered} 69.723 \\ \mathrm{Ga} \\ 31 \\ \hline \end{gathered}$	$\begin{gathered} 72.61 \\ \mathrm{Ge} \\ 32 \\ \hline \end{gathered}$	$\begin{gathered} 74.922 \\ \text { As } \\ 33 \\ \hline \end{gathered}$	$\begin{gathered} 78.96 \\ \mathrm{Sc} \\ 34 \\ \hline \end{gathered}$	$\begin{gathered} 79.904 \\ \mathrm{Br} \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 93.80 \\ \mathrm{Kr} \\ 36 \\ \hline \end{gathered}$
5	$\begin{gathered} 85.468 \\ 1 R b \\ 37 \\ \hline \end{gathered}$	$\begin{gathered} 87.62 \\ \mathrm{Sr} \\ 38 \\ \hline \end{gathered}$	$\begin{gathered} 88.906 \\ Y \\ 39 \\ \hline \end{gathered}$	$\begin{gathered} 91.224 \\ \mathrm{Zr} \\ 40 \\ \hline \end{gathered}$	$\begin{gathered} 92.906 \\ \mathrm{Nb} \\ 41 \\ \hline \end{gathered}$	$\begin{gathered} 95.94 \\ \mathrm{Mo} \\ 42 \\ \hline \end{gathered}$	$\begin{gathered} 98.907 \\ \mathrm{Te} \\ 4 \mathrm{~J} \\ \hline \end{gathered}$	$\begin{gathered} 101: 07 \\ \mathrm{Ru} \\ 44 \\ \hline \end{gathered}$	$\begin{gathered} 102.9 .1 \\ \mathrm{RH} \\ 45 \\ \hline \end{gathered}$	$\begin{gathered} 106.42 \\ P d \\ 46 \\ \hline \end{gathered}$	$\begin{gathered} 107.87 \\ \text { Ag } \\ 47 \\ \hline \end{gathered}$	$\begin{array}{c\|} 112: 41 \\ \mathrm{Ca} \\ 48 \\ \hline \end{array}$	$\begin{gathered} 114.82 \\ -1 r i \\ 49 \\ \hline \end{gathered}$	$\begin{gathered} \hline 118.71 \\ 5 n \\ 50 \\ \hline \end{gathered}$	$\begin{gathered} 121.75 \\ \mathrm{Sb} \\ 51 \\ \hline \end{gathered}$	$\begin{gathered} 127.60 \\ T \mathrm{c} \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} 126.90 \\ 1 \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} \hline 131.29 \\ \mathrm{Xc} \\ 54 \\ \hline \end{gathered}$
6	$\begin{gathered} 132.91 \\ \mathrm{Cs} \\ 55 \\ \hline \end{gathered}$	$\begin{gathered} 137.33 \\ \mathrm{Ba} \\ 56 \\ \hline \end{gathered}$	$\begin{gathered} 138.91 \\ { }^{*} \mathrm{La} \\ 57 \\ \hline \end{gathered}$	$\begin{gathered} 178.49 \\ \mathrm{Hf} \\ 72 \\ \hline \end{gathered}$	$\begin{gathered} 180.95 \\ \mathrm{Ta} \\ 73 \\ \hline \end{gathered}$	$\begin{gathered} 183.85 \\ W \\ 74 \\ \hline \end{gathered}$	$\begin{gathered} 186.21 \\ \mathrm{Re} \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190.2 \\ \text { Os } \\ 76 \\ \hline \end{gathered}$	$\begin{gathered} 192.22 \\ \text { Ir } \\ 77 \end{gathered}$	$\begin{gathered} 195.08 \\ \mathrm{Pt} \\ 78 \\ \hline \end{gathered}$	$\begin{gathered} 196.97 \\ \text { Au } \\ 79 \\ \hline \end{gathered}$	200.59 Hg 80	$\begin{gathered} 204.38 \\ T 1 \\ 81 \\ \hline \end{gathered}$	$\begin{gathered} 207.2 \\ \mathrm{~Pb} \\ 82 \end{gathered}$	$\begin{gathered} \hline 208.98 \\ \mathrm{Bi} \\ 83 \\ \hline \end{gathered}$	$\begin{gathered} (209) \\ \mathrm{Po} \\ 84 \\ \hline \end{gathered}$	$\begin{gathered} \hline(210) \\ \text { At } \\ \text { B5 } \\ \hline \end{gathered}$	$\begin{gathered} (222) \\ \operatorname{Rn} \\ 86 \\ \hline \end{gathered}$
7	$\begin{aligned} & 223 \\ & \mathrm{Pr} \\ & 87 \end{aligned}$	$\begin{gathered} 226.03 \\ \mathrm{Ra}_{\mathrm{a}} \\ 88 \end{gathered}$	$\begin{gathered} (227) \\ * * \mathrm{Ac} \\ 89 \end{gathered}$	$\begin{gathered} \text { (261) } \\ \text { Rf } \\ 104 . \end{gathered}$	$\begin{gathered} (262) \\ \mathrm{Ha} \\ 105 \end{gathered}$	$\begin{aligned} & (263) \\ & \text { Unh } \\ & 106 \end{aligned}$	$\begin{aligned} & (262) \\ & \text { Uns } \\ & 107 . \end{aligned}$	$\begin{aligned} & (265) \\ & \text { Uno } \\ & 108 \end{aligned}$	$\begin{aligned} & \text { (266) } \\ & \text { Une } \\ & \text { log } \end{aligned}$	$\begin{aligned} & (267) \\ & \text { Uni } \\ & 110 \end{aligned}$.						

${ }^{*}$ Lanthanide Scrics
***Aclinide Scrics

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	BK	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isolope wilh the longest half:life.

