UNIVERSITY OF SWAZILAND

 \leq_{*}

Re-Sit EXAMINATION 2017/2018-

TITLE OF PAPER: INTRODUCTION TO QUANTUM MECHANICS

COURSE NUMBER: CHE343

TIME: THREE (3) HOURS

INSTRUCTIONS:

This paper consists of two sections; Section A and B. Answer all question in section A and any two (2) questions in section B.

NB: Each question should start on a new page.

A data sheet and a periodic table are attached

A non-programmable electronic calculator may be used

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

· · ·

[3]

SECTION A [50 MARKS]

- a) Briefly outline 3 experiments that drove scientists to view that energy can be transferred only in discrete amounts [12]
- b) Show that the operators for position and momentum do not commute [4]
- c) What are the advantages of working with normalized wavefunctions [4]
- d) Given that an O₂ molecule is confined in one dimensional container of length 5cm.
 - i. Calculate the separation between the two lowest energy levels [3]
 - ii. At what value of n does the energy of the molecule reach 1/2kT at 300K
 - iii. What is the separation of this level (ii above) from the one immediately below it [3]
- e) The normalized wavefunction for a particle confined to move on a circle is

$$\psi(\phi) = \left(\frac{1}{2\pi}\right)^{\frac{1}{2}} e^{im\phi} \text{ where } m = 0, \pm 1, \pm 2, \dots, \text{ Determine } \langle \phi \rangle.$$
 [5]

f) Determine whether the angular momentum operator, expressed in cylindrical

coordinates,
$$\left(\hat{l}_{z} = \frac{\hbar\partial}{i\partial\phi}\right)$$
, has the eigenfunction of the form $\Psi_{ml}(\phi) = \frac{e^{im\phi}}{(2\pi)^{V_2}}$
[3]

g) The total energy eigenvalues of the hydrogen atom are given by

 $E_n = -\frac{e^2}{8\pi\varepsilon_0 a_0 n^2}$, n = 1, 2, 3,... and the three quantum numbers associated with the total energy eigenvalues are related by n = 1, 2, 3,...; I = 0, 1, 2,... n - 1; and $m_l = 0$, $\pm 1, \pm 2, \pm 3, ..., \pm I$. Using the notation Ψ_{nlm_l} , list all eigenfunction that have the following energy eigenvalues and hence give the degeneracy of these energy levels:

i.
$$E = -\frac{e^2}{32\pi\varepsilon_0 a_0}$$
 [3]

ii.
$$\mathsf{E} = -\frac{e^2}{72\pi\varepsilon_0 a_0}$$
[3]

h) Calculate the mean value of the radius, <r>, at which you would find an electron if the H atom wavefunction is $\Psi_{210}(\mathbf{r},\theta,\phi) = \frac{1}{4\sqrt{2\pi a_0^3}} \frac{r}{a_0} e^{-\frac{r}{2a_0}} \cos\theta$ [7]

SECTION B [50 MARKS]

QUESTION 1 (25 MARKS)

- a) Explain how Einstein's introduction of quantization of energy accounted for the properties of heat capacity at low temperatures [4]
- b) In an x-ray photoelectron experiment, a photon of wavelength 121 pm ejects an electron and it emerges with speed of 5.69 x 10⁷ m/s. Calculate the binding energy of the electron.
- c) For the following operator and function, show that the function is an eigenfunction of the operator and determine the eigenvalue.

- d) What is the de Broglie wavelength of an electron accelerated to 100 eV [3]
- e) A photon of radiation with a wavelength of 305 nm ejects an electron from a metal with a kinetic energy of 1.77 eV. Calculate the maximum wavelength of radiation capable of ejecting an electron from the metal.
- f) By evaluating the commutator, [x, P_x], show whether the operators for position and momentum commute. [4]
- g) Two (un-normalized) excited state wavefunctions of the hydrogen atom are

A)
$$\psi(r) = \left(2 - \frac{r}{a_0}\right)e^{-r/2a_0}$$

B)
$$\psi(r, \theta, \phi) = r \sin \theta \cos \phi e^{-r/2a_0}$$

Show that these two functions are mutually orthogonal.

QUESTION 2 (25 MARKS)

- a) A particle is in a state described by the function $\psi(x) = 0.632e^{2ix} + 0.775e^{-2ix}$. What is the probability that the particle will be found with momentum $2\hbar$ [3]
- b) Consider the energy eigenvalues of a particle in a one dimensional box

$$E_n = \frac{h^2 n^2}{8mL^2}$$
, $n = 1, 2, 3, ... as a function of n, m and L.$

- i. By what factor do you need to change the box length L to decrease the zero point energy by a factor of 400 for a fixed value of *m*? [3]
- ii. By what factor would you have to change *n* for fixed values of L and m to increase the energy by a factor of 400? [3]
- iii. By what factor would you have to increase L to have the zero point energy of an electron be equal to the zero point energy of a proton? [4]
- c) The function $\psi(x) = x \left(1 \frac{x}{L}\right)$, is an acceptable function for a particle in a one dimensional box of length L and with infinitely high walls.
 - i. Normalize $\psi(x)$ [6]
 - ii. Calculate the expectation value <x> [6]

QUESTION 3 [25 MARKS]

- a) The force constant of ¹H¹⁹F molecule is 966N/m. [Isotopic masses are ¹H 1.0078 u and ¹⁹F 18.9984 u].
 - i. Calculate the zero point vibrational energy of this molecule [5]
 - ii. If this amount of energy were to be converted to translational energy, how fast would the molecule be moving? [3]
 - iii. Calculate the frequency of light needed to excite the molecule from the ground state to the first excited state. [3]
- b) A gas phase ¹H¹⁹F molecule, with a bond length of 91.7 pm, rotates in a three dimensional space. Calculate the smallest quantum of energy that can be absorbed by this molecule in a rotational state.

- c) Consider a one dimensional harmonic oscillator
 - i. Write down the expression for the energy and define all terms [4]
 - ii. Assuming that the vibrations of a ${}^{14}N_2$ molecule are equivalent to those of a harmonic oscillator with force constant k = 2293.8N/m, what is the zero point energy of vibration of this molecule. [Take the mass of ${}^{14}N$ to be 14.0041 u]. [4]
 - iii. Calculate the wavelength of a photon needed to excite a transition between neighboring levels in the nitrogen molecule. [2]

Total Marks	/100/

Useful Integrals

1. $\int x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ 2. $\int x^3 e^{-x^2} dx = 0$ 3. $\int_0 x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$ 4. $\int sin\theta d\theta = -cos\theta + constant$ 5. $d\tau = r^2 sin\theta dr d\theta d\phi$ 6. $\int x^n dx = \frac{1}{a^{n+1}} \qquad n \neq -1$ 7. $\int_0^{2\pi} cos^2 \theta sin\theta d\theta = \frac{2}{3}$

General data and fundamental constants

Quantity .	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	. C	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_{\star}e$	$9.6485 \times 10^4 \text{ C mol}^{-1}$
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_{\star}k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atrn K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N,	6.022 14 X 10 ²¹ mol ⁻¹
Atomic mass unit	Ľ	1.660 54 X 10 ⁻¹⁷ Kg
Mass	·	
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{o} = 1/c^{2}\mu_{o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	$4\pi\varepsilon_{o}$	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ	$4\pi X 10^{-7} J s^{2} C^{-2} m^{-1}$
	· · · · ·	$4\pi X 10^{-7} T^2 J^{-1} m^3$
Magneton		·
Bohr	$\mu_{B} = e\hbar/2m_{e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	Be	2.002 32
Bohr radius	$a_{\mu} = 4\pi\epsilon_{o}\hbar/m_{e}e^{2}$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_{o}e^{2}c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_{e}e^{4}/8h^{3}c\epsilon_{o}^{2}$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		1
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 jo 1.602 2	oules (J X 10 ⁻¹⁹))	1 erg 1 eV/п	nolecule	, ;	-	1 X 10-7 J 96 485 kJ mol-1			
Prefixes	f	p	n	μ	m ·	c	d	k	M	G	
	femto	pico.	nano	micro	milli	centi	deci	kilo	mega	giga	
	10 ⁻¹⁵	10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10°	

PERIODIC TABLE OF ELEMENTS

* *	GROUPS																	
· · ·	1	2	.3	4	5	6	7	8	. 9	10	11	12	13	14	15	16	17	18
PERIODS	14	ΠΛ	IIIB	IVB	·VB	VIB	VIIB		VIIIB		IB	IIB	AIII	IVA	VA	YIA	VIIA	VIIIA
	1.008	1											· · · ·					4,003
	11				•		· .		** , * .				•	•				lle
			•										· · ·					2
	6.941	9.012]	*		ļ.	· · ·	•		•	Atom	ic mass –	+ 10.811	12.011	14.007	15.999	18.998	20.180
2	Li	Be				1					Syı	nbol –	$\rightarrow B$	Ċ	N	0	F	-Ne
	3.	4 ,					•		· · ·		Alon	nic No. 🗂	> s	6	. 7	8	9	10
· .	22.990	24,305							•.				26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg			•	TRAN	SITIO	N ELEN	IENTS				AI	Si ·	P	S	CI	Ar
	11	12		•			• .	· · · · ·		÷ *		, .	13	14	15	16	17	18
1	39.098	40.078	44,956	47,88	50.942	51.996	54.938	55.847	58,933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	К	Ca	Sc	Ti	V	Cr	Mn ·	Fe	Co	Ni	Cu	Zπ	Ga	Ge	As	Sc	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98,907	101:07	102.91	106.42	107.87	112:41	114.82	118.71	121.75	127.60	126.90	131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- In	Sn	Sb	Tc	I	Xc
	37	38	39	40	41	42	43	44	45	46	47	48 .	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W	Re	Os	Ir '	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80 '	81	82	83	84	B5	8G
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)		•						
7	l'r	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun		• •					•	
	87	88	89	104,	105	106	107.	108	109	110		•						
		-	_							•								-
*			Í	140.12	140.91	44.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	17.4.97	•

*Lanthanide Series

**Actinide Series

	140.12 Ce	140.91 Pr 59	144.24 Nd	(145) Pm	150.36 Sm	151.96 Eu	157.25 Gd	158.93 Tb	162.50 Dy	164.93 Ho	167.26 Er	168.93 Tm	173.04 Yb	17.4.97 Lu
:	232.04 Th	231.04 Pa	238.03	237.05 Nn	(244) (244)	(243)	04 (247)	(247)	00 (251)	(252)	08 (257) E	(258)	(259)	(260)
	90	91	92 ·	93	94	95	96 96	ык 97	· 98	99 99	100 I	101	102	Lr 103

() indicates the mass number of the isotope with the longest half-life.