UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

Main Examination, November-December 2010

Title of paper: OPERATING SYSTEMS

Course numbers: CS442

Time allowed: 3 hours

Instructions: Answer any 5 out of the 6 questions. Each question carries 20 marks.

This examination paper should not be opened until permission has been granted by the invigilator

Question 1

(a)	Explain why it is essential for operating systems to provide memory abstraction.		
(b)	Describe the main steps in address translation carried out by pure paging memory systems.		
(c)	Describe the purpose of the following 3 fields in the page table: protection bits, modified bit and referenced bit.		
(d)	 A paging memory system with pages of size 2 KB uses 16-bit virtual addresses (i) How many entries should be in the page table? (ii) Suppose that pages 0, 1 and 2 have page table entries of 3, 0, and 10, respectively. Assuming that all 3 of these pages are present in main memoral calculate the physical addresses corresponding to virtual addresses 0x0 and 0x2402. 		[1] mory,
(e)	(i) (ii)	A paged-segmented memory system has 4 KB page size and 64 KB virtaddress space. Determine whether a program with 3 segments – 16 KB 8 KB stack and 40 KB data – would fit into the address space. Repeat question (i) assuming 8 KB page size.	
Ques	stion 2		
(a)	Describe the purpose of the 3 main kinds of program segments: text, stack and data.		[3]
(b)	Explain the problem of fragmentation that affects segmented memory systems. How does it arise, and what difficulty does it cause? In addition, explain how it may be overcome.		
(c)	Define the term working set.		[2]
(d)	A small computer has 4 page frames and 8 pages of virtual address space. There are no pages in memory initially, and subsequently the following sequence of page accesses occurs: 4, 7, 3, 2, 0, 4, 2, 1, 6, 5, 4, 2 (i) What are the contents of main memory at the end of each access, assured the page replacement policy?		
	(ii)	Repeat question (i) assuming FIFO page replacement.	[4]

Question 3

(a)		Oraw a state transition diagram of the process model. In addition, describe each tate and transition shown.	
(b)	Desc	ribe any 2 items found in a typical process control block (PCB).	[2]
(c)	Disti	nguish between processes and threads.	[2]
(d)	Briefly discuss any 3 goals of process scheduling (of interactive processes in particular).		
(e)	A priority-scheduling kernel uses 2 levels of priority. Assume that the ready queue consists of 1 high priority process and 1 low priority process, and that each process needs 4 quanta of running time. How much time is left until the low priority process terminates? [1]		
(f)	A shortest-process-next scheduler uses an ageing coefficient (a) of 1/2. The first 4 run times of a program are 48, 16, 24 and 32 (milliseconds), respectively. Calculate the predicted duration of the 5 th run.		
Ques	tion 4		
(a)	Defir	Define critical region and mutual exclusion. [2	
(b)	(i)	Define the operations on semaphores.	[5]
	(ii)	A semaphore is shared by processes P1, P2 and P3. The semaphore is initialized to 1 and undergoes the following sequence of 8 operations:	
		P1 down, P2 down, P3 up, P1 down, P2 down, P3 up, P1 up, 3 up	
	(iii)	Give the semaphore's value and draw the queue of blocked processes at end of each operation. Explain why it is impossible for the 3 rd operation in question (ii) to be:	[4]
		P2 up.	[1]
(c)	Write it wo	e down Peterson's algorithm for mutual exclusion and briefly comment on rks.	how [8]

Question 5

- (a) An MS-DOS disk has 2 files (A & B) and 1 subdirectory (D) in the root directory. There is a single file (C) inside D. Draw a labelled diagram showing how MS-DOS represents this information using 2 directory records. [4]
- (b) Describe any 5 attributes given to files in typical file systems. [5]
- (c) Describe the purpose of the following system calls related to files: Read, Write, Append, Seek and Close. [5]
- (d) (i) Draw a labelled diagram of the structure of large files in Unix, including single-, double- and triple-indirect blocks. [3]
 - (ii) Work out the maximum size of a file in Unix, assuming 1 KB disk blocks. [3]

Question 6

- (a) Describe the sequence of steps required to handle an interrupt. [10]
- (b) A disk receives the following sequence of requests: 8, 16, 14, 6, 30, 7, 25

Assuming that the head is initially over cylinder 15, and that seek time is 4 msec per cylinder moved, calculate the total seek time under each of the following disk scheduling policies:

- (i) First come, first served.
- (ii) Shortest seek time first.
- (iii) Elevator, with head moving outward initially.

In addition, for each case, list the order in which requests are answered. [10]

*** END OF QUESTION PAPER ***