## UNIVERSITY OF SWAZILAND <br> FINAL EXAMINATION, DEC, 2011

Title of Paper : THEORY OF COMPUTATION
Course number: CS211
Time allowed : Three (3) hours.
Instructions : (1) Read all the questions in Section-A and Section-B before you start answering any question.
(2) Answer all questions in Section-A and any two questions of section-B. Maximum mark is 100 .
(3) Use correct notations and show all your work on the script.

This paper should not be opened until the invigilator has granted permission.

## SECTION-A (Maxímum marks 50)

Q1(a) (marks $6+6+12$ ). The following languages are given on symbol set $\{0,1\}$. Assume that $u, v, w \in\{0,1\}^{*}$.

```
(i). L1 = {uwv, |u| = |v|=2}
(ii). L2 ={00w} U{w11}
(iii). L3 = {w, (|w| mod 3 f 0)}
```

The following set of words is given -
$\{\lambda, 0,1,01,001,0100,00011,1111101,0001111,00000011,001111011,010101\}$
(a). From the above set, write all the words belonging to L 1 , all the words belonging to L 2 and all the words belonging to L3 .
(b). Write regular expressions representing L1, L2 and L3.
(c). Design three deterministic finite acceptors (dfa's) accepting L1, L2, and L3 respectively.

Q2 (marks $6+6+14$ ). The following non deterministic finite acceptor (nfa) is given :

```
M=({q0,q1,q2},{0,1},q0, \delta,{q0,q2}), where }\delta\mathrm{ is given as :
\delta(q0,0) = q2 ; \delta(q0,1) ={q0, q1};
\delta(q1,0) = q2 ; \delta(q1,1) = q1 ;
\delta(q2,0) = q1 ; \delta(q2,1) = q0.
```

(a). Draw the transition digraph of the nfa.
(b). Compute $\delta^{*}(q 0, w)$ where $w=111,100$ and 101 .
(c). Convert the above nfa into an equivalent dfa and write its state transition table (STF).

## SECTION-B (Maximum marks 50)

Note: Answer any two questions in this section.
Q3(a) (marks 10). Explain with examples the language of signed and unsigned integer data values in PASCAL programming language. Write a corresponding right linear grammar.

Q3(b) (marks 9+6). Assuming $n, m$ and $k \geq 0$, find Context Free Grammars (CFG) G1 and G2 that generate the following languages. -

```
(i). L(G1) ={ {an b b
(ii).L(G2) ={ an bm}\mp@subsup{c}{}{k},(m\geqk)}
```

Write left most derivations for $w 1=a b b, w 2=b b c c c c c c, w 3=a b b b c c c$ using G1 and $w 4=b b c, w 5=a a$ and $w 6=a a b b$ using G2.

Include production number at each step of your derivation.
Q4(a) (marks 15). Design a deterministic pushdown automaton (dpda) to recognize the language -

$$
L=\left\{w \in a^{n} b^{m}, n>m, \text { and } n, m>=1\right\}
$$

Give functional steps and clearly describe as to how your dpda accepts and rejects words of L . Write instantaneous descriptions for $\mathrm{w} 1=\mathrm{aa} a \mathrm{bb}$ and $\mathrm{w} 2=\mathrm{aaa}$.

Q4(b) (marks $6+4$ ). Design a non deterministic pushdown automaton (npda) to recognize the language generated by the grammar -

$$
G=(\{S, Z, B\},\{a, b\}, S, P)
$$

where the set of productions P is


Write instantaneous descriptions for $w=a a a b$.

Q5 (marks $15+5+5$ ). Write the design of a Turing Machine (TM) to compute -

```
F(x) = 2x + 1
```

Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the value of $x$ as 11 and 1111 (in unary representation) for your Turing Machine.

## (End of Examination Paper)

