University of Swaziland

Department of Computer Science
Final Examination
May 2012

TITLE OF PAPER: COMPUTER ORGANISATION I

COURSE NUMBER: CS 241

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER QUESTION ONE FROM SECTION A AND
ANY THREE QUESTIONS FROM SECTION B

This examination paper should not be opened until the invigilator grants permission.

SECTION A

Question 1 (COMPULSORY)

A. Describe the concept of virtual machine. [2]
B. What is the difference between a translator and interpreter? [2]
C. Draw a clearly labelled diagram of the CPU including control communications. [4]
D. Explain Moore's Law usingprocessor speed as an example. [2]
E. Draw and label the data path of a typical Von Neumann Machine. [3]
F. Illustrate the problem of transferring data from a Big endian machine to a Little endian machine using the integer 260 . [2]
G. What is the major problem with a direct-mapped cache memory? Describe one of the other cache organisations and say why it does notsuffer from the same problem. [10]

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

Question 2

A. Convert the following number 123_{10} into the given radices:
i. Hex
ii. Two's complement
B. Perform addition on the following sets of binary numbers using one's and two's complement
i. 1010,11001
C. Prove that ($\mathrm{m}+\mathrm{r}+1$) $\leq 2^{\mathrm{r}}$ determines the limit of check bits needed to correct single errors.
D. What is the percentage of bits wasted for the following word sizes: $32,128,512$. [4]
E. Construct the Hamming code for the following memory word 1111000010101110.[4]
F. Illustrate how this code can correct 2 single bit errors. [6]

Question 3

A. Define the locality principle of memory references.
B. Define cache hit ratio, miss ratio.
C. Consider the operation of a machine with the basic Von Neumann data path. Suppose that loading the ALU input registers takes 5 nsec , running the ALU takes 10 nsec , and storing the result back in the register scratchpad takes 5 nsec . What is the maximum number of MIPS this machine is capable of in the absence of pipelining?
D. Describe with the aid of a diagram, Raid 1.
E. What is meant by a superscalar architecture? What are the two types of superscalar machines?

The above cirucit diagram shows a full adder. Write out a truth table showing values of the sum and carry out for all the possible combinations of A, B and carry in.

The gates marked X are exclusive or (XOR) gates; those marked A are AND gates; the gate marked O is an OR.

Question 4

A. Briefly describe the following storage devices:
Flash Disk, DVD
C. Give brief definitions/ descriptions of the following:
i) Modulation [2]
ii) Baud [2]
iii) Duplex channel [2]
D. Describe briefly how register renaming works [2]
E. Describe with the aid of an illustration:
i) Multiplexer [4]
ii) SR latch [4]

Question 5

A. How long does it take to read a disk with 10,000 cylinders, each containing four track of 2048 sectors? First, all sectors of track 0 are to be read starting at sector 0 , then all sectors of track 1 starting at sector 0 , and so on. The rotation time is 10 msec , and a seek takes 1 msec between adjacent cylinders and 20 msec for the worst case.

Switching between tracks of a cylinder can be done instantaneously.
B. To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair amount of compression is required. Calculate the compression factor required. Assume that 3.5 GB of space is available for the video track, that the image resolution is 720×480 pixels with 24 -bit color, and images are displayed at 30 frames $/ \mathrm{sec}$. [8]
C. Define speculative execution.
D. Describe with relevant illustrations, branch prediction, clearly distinguishing dynamic from static branching.
[4]

