UNIVERSITY OF SWAZILAND

Faculty of Science
Department of Computer Science
SUPPLEMENTARY EXAMINATION 2012

Title of paper: COMPUTER ORGANISATION II
Course number: CS341
Time allowed: 3 hours
Instructions to candidates:
This question paper consists of FIVE (5) questions. Answer any FOUR (4) questions. Marks are indicated in the square brackets.
All questions carry equal marks.

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

OUESTION 1

a) What is the main purpose of the control store? Communication with memory can be done in 2 different ways. State and briefly describe the 2 ways in which memory access can be achieved.
b) With the aid of appropriate diagrams, describe the following allocation algorithms:
i) First fit
ii) Worst fit
c) With the aid of suitable diagrams compare the following:
i) Cache miss and page fault
ii) Conditional and unconditional branching
d) Why does the Intel have segment registers and SPARC not?

QUESTION 2

a) Assume you have an expanding opcode that supports the following formats, with a 3 bit register:

> 4 Instruction with 3 registers
> 255 Instructions with one register
> 16 Instructions with zero registers
i) How many opcodes, in total, does the preceding require? [4]
ii) How many bits does the opcode require to support the 3 formats? [4]
b) What is a latch? Give one example of a latch and describe how it works. [6]
c) What is Microprogramming? What are the advantages and drawbacks of
microprogrammed control compared to hardwired control?
d) State and describe any 4 datapath registers [4]

QUESTION 3

a) Briefly explain how the concept of speculative execution is useful in improving performance.
b) Evaluate the following arithmetic expression into Decimal.

$$
\begin{equation*}
121_{16}+122_{10}-123_{8} \tag{5}
\end{equation*}
$$

c) Evaluate the following reverse polish expression, where each number is a (decimal) digit. $A B C D E^{*} F /+G-H / *+$
d) Convert into reverse polish notation the following infix expression (where operators have their usual/normal precedence) $(2 \times 3+4)-(4 / 2+1)$. Generate IJVM code to evaluate it. Show values in the Stack during the evaluation. [10] (See the IJVM instruction set on last page)

QUESTION 4

a) Why do interrupt service routines have priorities associated with them whereas normal procedures do not have priorities?
b) Using correct terminology and illustrations, in short paragraphs, describe the following terms:

i)	Segmentation	$[7]$
ii)	Paging	
iii)	Paged segmentation	$[7]$
	[4]	

OUESTION 5

a) Syntax and Semantic error messages refer to source code line numbers. Illustrate how these numbers are affected by Macro Expansion.
b) An Instruction set has 4 bits for opcode and 32 bits for addresses. What percentage change in instructions and memory resolution results if the opcode is increased by 2 bits without altering the instruction length (by taking bits from address portion)?
[6]
c) Distinguish between the following pairs of concepts.
i. Shared and distributed memory systems
[3]
ii. Big Endian and Little Endian
[3]
iii. Immediate and Indirect addressing modes
d) Distinguish between the relocation and external reference problem with respect to linker functions.

The IJVM Instruction Set

Hex	Mnemonic	Meaning
0×10	BIPUSH byte	Push byte onto stack
0×59	DUP	Copy top word on stack and push onto stack.
0×47	GOTO offset	Unconditional branch
0×60	IADD	Pop two words from stack; push their sum
$0 \times 7 E$	IAND	Pop two words from stack; push Boolean AND
0×99	IFEQ offset	Pop word from stack and branch if it is zero
0×98	IFLT offset	Pop word from stack and branch if it is less than zerc
$0 \times 9 \mathrm{~F}$	IF	Pop two words from stack; branch if equal
0×84	IINC vamum const	Add a constant to a local varlable
0×15	ILOAD varinum	Push local variable onto stack
0×86	INVOKEVIRTUAL disp	Invoke a method
0×80	IOR	Pop two words from stack; push Boolean OR
OXAC	IRETURN	Return from method with integer value
0×36	ISTORE vamum	Pop word from stack and store in local variable
0×64	ISUB	Pop two words from stack; push their difference
0×13	LDC W index	Push constani from constant pool onto stack
0×00	NOP	Do nolhing
0×57	POP	Delete word on top of stack
$0 \times 5 F$	SWAP	Swap the two top words on the stack
$0 \times \mathrm{C4}$	WIDE	Prefix instruction; next instruction has a 16-bit index

