UNIVERSITY OF SWAZILAND

Faculty of Science

Department of Computer Science

MAIN EXAMINATION 2012

Title of paper: PROGRAMMING LANGUAGES

Course number: CS343

Time allowed: 3 hours

Instructions to candidates:

This question paper consists of <u>FIVE (5)</u> Questions. Answer any <u>FOUR (4)</u> questions. Marks are indicated in the square brackets. *All questions carry equal marks.*

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION 1

a)	State any 5 reasons why we study concepts of programming languages.	[5]
b)	i) State 2 uses of parameters.	[2]
	ii) With the aid of appropriate sample/example programs explain the difference between actual parameters and formal parameters.	[6]
	iii) What is the difference between a function and a procedure?	[4]
c)	Over the last four decades what factor do you think has had the most influence on design of programming languages?	the [2]
d)	Language implementation can rely on compilers or interpreters. What are the differences between compilation and interpretation?	[6]

QUESTION 2

a) Briefly describe the following terms, as they are understood by a PROLOG programmer:					
i.	Fact;				
ii.	Rule;				
	Query.				

- iv. Unification [8]
- b) **PROLOG** programs are often described as being declarative in nature. Explain what we mean when we say program statements are declarative. [3]

c) Briefly describe the characteristic features of the following:

ii) Functional programming languages

iii) Logic programming languages	[3marks each]	
State 3 applications of each of these types of programming languages.	[3]	

d) University of Swaziland has decided to automate the process it uses for checking students' degree programmes. The University needs to be able to check that students have the correct pre-requisites for any paper that they wish to take. The rules for pre-requisites for papers in the BSc in Physical Education, Department of Surfing can be expressed in PROLOG as:

```
/*
prereq(Course1, Course2) succeeds if Course2 is a pre-requisite for Course1
*/
prereq(surf113, surf112).
prereq(surf212, surf113).
prereq(surf213, surf113).
prereq(surf215, surf113).
prereq(surf216, surf113).
prereq(surf311, surf215).
prereq(surf312, surf215).
prereq(surf312, surf216).
prereq(surf313, surf212).
prereq(surf313, surf216).
prereq(surf314, surf212).
prereq(surf314, surf216)
prereq(surf315, surf213).
prereq(surf315, surf215).
prereq(surf316, surf213).
prereq(surf316, surf215).
```

prereq(surf389, surf311).

Unfortunately the University has employed a Surfing graduate, rather than a Computer Science graduate, and he has written the following PROLOG code:

/*

requires(Course1, Course2) succeeds if Course2 is a requirement for Course1. Course2 is a requirement for Course1 if it is a pre-requisite for a course which is a requirement for Course1 or if is a pre-requisite for Course1.

*/

```
requires(Course1, Course2) :-
    requires(Course1, Other),
    prereq(Other, Course2).
requires(Course1, Course2) :-
    prereq(Course1, Course2).
```

Explain how PROLOG will attempt to answer the following query, and what the result will be:

?- requires(surf389, surf112).

[5]

QUESTION 3

a)	Briefly describe the GOTO statement. Also explain why it is discouraged by st programming languages.	ructured [4]
b)	i) Briefly explain the purpose of parse trees.	[3]
	ii) BNF is said to be a metalanguage. What is a metalanguage?	[2]
	<pre>iii) Given the following BNF grammar:</pre>	

Construct the parse tree for the expression **a** – **b***(**c**+**d**). [6]

c) Consider a program with 3 procedures, *f*, *g* and *h*, which carry out the following steps:

	<u>f</u>		G		Н
1.	Assign 1 to x	1.	Assign 3 to <i>x</i>	1.	Assign 6 to y
2.	Assign 2 to y	2.	Assign 4 to y	2.	Display x
3.	Call g	3.	Call h		
4.	Display x	4.	Display y		

- i. Assuming that **x** and **y** are global variables, write down the values displayed when **f** is called, in their order that they appear on screen. [6]
- ii. Answer question (a) assuming that x and y are dynamically scoped local variables. [4]

QUESTION 4

a)	What are the primary differences between static and dynamic binding.	[2]		
b)	State 2 reasons why the λ - calculus is of interest to computer scientists. Evaluate the			
	following expression: ((λx. x*x) ((λx. x-1) 4))	[4]		
c)	State and describe the 3 defining properties of an object.	[6]		
d)	Rewrite the expression $\frac{b^2-4ac}{2a}$ in prefix form, i.e., using (+), (-), (*) and (/).	[4]		
e)	With the aid of appropriate examples, explain the following terms:			
	i. Message passing	[2]		
	ii. Lazy evaluation	[2]		
	iii. Type checking	[2]		
	iv. Functional abstraction	[3]		
QI	JESTION 5			
a)	Distinguish between: Axiomatic and denotational semantics.	[8]		
b)	Briefly explain the single main difference between:			
	i. Machinelanguage and Assembly language			
	ii. Statements and expressions			
	iii. Selection control structure and repetition control structure	[6]		
c)	State any 2 advantages of formal descriptions of semantics.	[2]		
d)	Write a Haskell script that can be used to evaluate the expression: $x = \frac{\sqrt{b^2 - 4ac}}{2a}$	[6]		
e)	What is the output of executing the Haskell code: map (+3) [15]	[3]		

<<End of Question Paper>>