University of Swaziland

Department of Computer Science

Final Examination

May 2013
TITLE OF PAPER: COMPUTER ORGANISATION I
COURSE NUMBER: CS 241
TIME ALLOWED: 3 HOURS
INSTRUCTIONS: ANSWER QUESTION ONE FROM SECTION AANSWER THREE QUESTIONS FROM SECTION B

SECTION A

QUESTION 1 (COMPULSORY)

A. Describe the concept of virtual machine.
B. What is the difference between a translator and interpreter?
C. Draw a clearly labelled diagram of the CPU including control communications. [6]
D. Draw and label the typical data path of a typical Von Neumann Machine.
E. What is the difference between a single and multi-cycle datapath?
F. What is the major problem with a direct-mapped cache memory? Describe one of the other cache organisations and say why it does notsuffer from the same problem. [10]

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

QUESTION 2

A. Convert the unsigned number 101101 (base two) to decimal form.
B. Convert the twos complement number 101110 to decimal form
C. Perform addition on the following sets of binary numbers using one's and two's complement

$$
\text { i. } 1010,11001
$$

D. Prove that $(\mathrm{m}+\mathrm{r}+1) \leq 2^{\mathrm{r}}$ determines the limit of check bits needed to correct single errors.
E. Using the Hamming inequality in (C), What is the percentage of overhead bits for each of the following word sizes: $32,128,512,1024$.
F. Construct the Hamming code for the following memory word 1101000010101110.[4]
G. Illustrate how this code can correct 2 single bit errors.

QUESTION 3

A. Explain the locality principle of memory references. How does it influence the memory hierarchy design?
B. Define cache hit ratio, miss ratio, illustrating with the relevant equation
C. Consider the operation of a machine with the basic Von Neumann data path. Suppose that loading the ALU input registers takes 5 nsec , running the ALU takes 10 nsec , and storing the result back in the register scratchpad takes 5 nsec . What is the maximum number of MIPS this machine is capable of in the absence of pipelining?
D. Describe with the aid of a diagram how pipelining works?

The above cirucit diagram shows a full adder. The gates marked X are exclusive or (XOR) gates; those marked A are AND gates; the gate marked O is an OR. Write out a truth table showing values of the sum and carry out for all the possible combinations of A, B and carry in.

OUESTION 4

A. Why are the read and write control lines in a DMA controller should be bidirectional?

Under what condition and for what purpose are they used as inputs and as outputs?[4]
B. Distinguish between synchronous and asynchronous buses
C. Give brief definitions/ descriptions of the following:
i) Modulation [2]
ii) Baud
iii) Duplex channel
D. Describe briefly how register renaming works
E. Describe with the aid of an illustration:
i) Multiplexer [4]
ii) SR latch

OUESTION 5

A. How long does it take to read a disk with 10,000 cylinders, each containing four tracks of 2048 sectors? First, all sectors of track 0 are to be read starting at sector 0 , then all sectors of track 1 starting at sector 0 , and so on. The rotation time is 8 msec , and a seek takes 1 msec between adjacent cylinders and 20 msec for the worst case. Switching between tracks of a cylinder can be done instantaneously.
B. Describe how register renaming works using a suitable diagram
C. To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair amount of compression is required. Calculate the compression factor required. Assume that 3.5 GB of space is available for the video track, that the image resolution is 720×480 pixels with 24 -bit color, and images are displayed at 30 frames $/ \mathrm{sec}$. [8]
D. Define cycle stealing
E. What is Moore's Law, and why is it important? What is the likelihood that it will hold in the future? Explain in detail.

