University of Swaziland

Department of Computer Science

and a straight for the second second second

Final Examination

May 2013

TITLE OF PAPER:	COMPUTER ORGANISATION I
COURSE NUMBER:	CS 241
TIME ALLOWED:	3 HOURS
INSTRUCTIONS:	ANSWER QUESTION ONE FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B

This examination paper should not be opened until the invigilator grants permission.

Page 1 of 5

SECTION A

QUESTION 1 (COMPULSORY)

 $\subseteq J$

Α.	Describe the concept of virtual machine.	[2]
B.	What is the difference between a translator and interpreter?	[2]
C.	Draw a clearly labelled diagram of the CPU including control communications.	[6]
D.	Draw and label the typical data path of a typical Von Neumann Machine.	[3]
E.	What is the difference between a single and multi-cycle datapath? [2]	
F.	What is the major problem with a <i>direct-mapped</i> cache memory? Describe one of	the
	other cache organisations and say why it does notsuffer from the same problem. [10]

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

QUESTION 2

A.	Convert the unsigned number 101101 (base two) to decimal form.	[2]
B.	Convert the twos complement number 101110 to decimal form	[2]
C.	Perform addition on the following sets of binary numbers using one's and two's	
	complement	
	i. 1010, 11001	[4]
D.	Prove that $(m+r+1) \le 2^r$ determines the limit of check bits needed to correct single	
	errors.	[5]
E.	Using the Hamming inequality in (C), What is the percentage of overhead bits for	
	each of the following word sizes: 32, 128, 512, 1024.	[4]
F.	Construct the Hamming code for the following memory word 1101000010101110).[4]
G.	Illustrate how this code can correct 2 single bit errors.	[4]

,

Page 2 of 5

QUESTION 3

A.	Explain the locality principle of memory references. How does it influence the	 Sector 2 Sector 2
	memory hierarchy design?	[4]
B.	Define cache hit ratio, miss ratio, illustrating with the relevant equation	[4]
C. Consider the operation of a machine with the basic Von Neumann data path. Suppose that loading the ALU input registers takes 5 nsec, running the ALU takes 10 nsec, and		oose
		and
	storing the result back in the register scratchpad takes 5 nsec. What is the maximu	m
	number of MIPS this machine is capable of in the absence of pipelining?	[4]
D.	Describe with the aid of a diagram how pipelining works?	[5]

The above cirucit diagram shows a *full adder*. The gates marked X are exclusive or (XOR) gates; those marked A are AND gates; the gate marked O is an OR. Write out a truth table showing values of the *sum* and *carry out* for all the possible combinations of A, B and *carry in*. [8]

Page 3 of 5

OUESTION 4

망

Â.	A. Why are the read and write control lines in a DMA controller should be bidirectional		
	Under what condition and for what purpose are they used as inputs and	as outputs?[4]	
В	B. Distinguish between synchronous and asynchronous buses	[5]	
C	C. Give brief definitions/ descriptions of the following:		
	i) Modulation	[2]	
	ii) Baud	[2]	
	iii) Duplex channel	[2]	
Γ	D. Describe briefly how register renaming works	[2]	
E	. Describe with the aid of an illustration:		
	i) Multiplexer	[4]	
	ii) SR latch	[4]	

•

OUESTION 5

- A. How long does it take to read a disk with 10,000 cylinders, each containing four tracks of 2048 sectors? First, all sectors of track 0 are to be read starting at sector 0, then all sectors of track 1 starting at sector 0, and so on. The rotation time is 8msec, and a seek takes 1msec between adjacent cylinders and 20 msec for the worst case. Switching between tracks of a cylinder can be done instantaneously. [5]
 - B. Describe how register renaming works using a suitable diagram [5]
 - C. To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair amount of compression is required. Calculate the compression factor required. Assume that 3.5 GB of space is available for the video track, that the image resolution is 720 x 480 pixels with 24-bit color, and images are displayed at 30 frames /sec. [8]

D. Define cycle stealing

E. What is Moore's Law, and why is it important? What is the likelihood that it will hold in the future? Explain in detail. [4]

[3]