# University of Swaziland <br> Supplementary Examination 

## JULY 2013

Title of paper : Data structures
Course number : CS342
Time Allowed : Three(3) hours
Instructions

- Each question is worth 20 marks
- Answer any five(5) of the seven (7) questions

This paper may not be opened until permission has been granted by the invigilator

## Question 1

(a) List and describe the operations of the queue ADT.
(b) Give a linked-list based implementation of the queue ADT, including definitions of relevant data types.

## Question 2

(a) List and describe the operations of the stack ADT
(b) Define the meaning of big-O notation and hence show that $N(N+1)$ is $O\left(N^{2}\right)$. [6]
(c) Using C++ STL or Java Collection, write an algorithm that finds and returns the greatest value in a given stack of numbers.
(d) Analyse the big-O time complexity of the algorithm given in (c).

## Question 3

Using C++/Java notation, write an array based class that implements the list ADT, including definitions of relevant data and member functions.

## Question 4

(a) Draw a binary tree of size 10 and depth 4 . Label the nodes $1,2, \ldots, 10$ according to the postorder traversal sequence.
(b) What is meant by the term binary search tree?
(c) Draw the binary search tree that results from insertion of the following values in sequence: $2,-10,3,15,0,9$.
(d) Write an algorithm that searches for a given key in a given binary search tree. It should return the subtree whose root contains the given key, if found. Otherwise it should return the empty tree:

## Question 5

(a) Write an algorithm that takes a list of numbers and repeatedly deletes the largest remaining item until the list becomes empty.
(b) Analyse the big-O time complexity of the algorithm given in (a), assuming that the given list is array based.

## Question 6

(a) Draw a sample directed graph with 9 nodes and 15 edges.
(b) With the aid of the graph obtained in (a) above, explain the main ideas behind adjacency matrix and an adjacency list representation of graphs.
(c) Write the algorithm for depth-first traversal of a given graph commencing at a given vertex.
(d) Using the graph obtained in (a), show a trace of the depth-first search algorithm.

## Question 7

(a) Explain the meaning of the following terms:
(i) Left shell of a node
(ii) Height of a tree
(iii) $(\mathrm{a}, \mathrm{b})$-tree
(iv) $\mathrm{B}+$ tree
(b) Assuming the values are inserted in the given order, construct a 2-3 tree containing following values:
Gule, Khan, Zulu, Oyoko, Mamba, Banda, Dube, Cele, Langa, Nkomo, , Xaba, Musi, Sambo, Zulu, Odumbe, Jele, Gama, Mumba, Hlubi, Hlophe,

