University of Swaziland
 Department Of Computer Science
 DECEMBER 2013

Title of paper:

Course number:

Time Allowed:

Introduction to Logic

CS235

Three (3) hours

Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

SPECIAL REOUIREMENT:

NO CALCULATORS ARE ALLOWED FOR THIS EXAMINATION PAPER.

This paper may not be opened until permission has been granted by the invigilator

OUESTION 1

(i) Define the following terms
(a) Proposition
(b) Predicate
(c) Valid Argument [2]
(d) Tautology [2]
(e) Contingent
(ii) Let $\mathrm{P}=$ "Sipho is healthy"
$Q=$ "Sipho is wealthy"
$\mathrm{R}=$ "Sipho is wise"
Represent as propositional expressions the following statements:
(a) Sipho is healthy and wealthy but not wise
(b) Sipho is not wealthy but he is healthy and wise
(c) Sipho is neither healthy nor wealthy nor wise
(iii) Consider the sentence: If the test is cancelled we shall have a party.
(a) Identify the atomic propositions in the sentence.
(b) Translate the sentence into a propositional form and write down its truth table.
[2]
(iv) Define suitable predicates and then express the following statement as a logical expression:

All the boys failed the mathematics test.

QUESTION 2

At University of Swaziland, students are registered in courses. At the end of the year, each course is allocated a mark, and a student is declared to have passed a course if the mark obtained in that course is greater than 50 . A course can be supplemented if the mark is greater than 40 but less than 50 .

Using prolog notation:
(i) Define suitable ground predicates to express the following facts in a knowledge base:

- Five (5) students: gugu, kim, joe, musa, fana,
- Three (3) courses): cs211, m220, b204
- Five (5) student registration details. Each registration specifies the student name, the course and the mark obtained. A student may register for more than one course. Two of the students should not be registered in any course.
(ii) Define a rule predicate, called pass (\mathbf{S}, \mathbf{C}), that returns true if student \mathbf{S} registered in course \mathbf{C} and passed the course.
(iii) Define a rule predicate, called supplement (\mathbf{S}, \mathbf{C}), that returns true if student \mathbf{S} registered in course C, and can supplement the course.
(iv) Write a query for each of the following:- in each case indicate the expected result of the query [based on your facts in (i)].
(a) Determine if gugu is a student.
(b) Determine if fana is registered in B204.
(c) Find all courses that have a mark less than 30
(d) Find all students who failed some course
(e) Find all students who are not registered in any course

OUESTION 3

(i) Convert the decimal number 154 to its binary equivalent.
(ii) Convert the binary number 101110 to its hexadecimal equivalent.
(iii)Consider a Boolean function that takes 4 inputs representing the 4 binary digits of any integer number between 0 and 15 . The function return true if the value of the integer number is a multiple of 3 (i.e. $3,6,9$, etc), and false otherwise.
(a) Draw a truth table for the boolean function.
(b) Based on the truth table obtained in (a) above, write a logical expression of the function in:

- Conjunctive normal form.
- Disjunctive normal form.
(c) Use a Karnaugh map to obtain a minimized logical expression of the function.
(d) Based on your answer in (c) above, draw a circuit diagram that implements the function defined in (a).

OUESTION 4

(i) Using a truth table show that $(\mathbf{A} \vee \mathbf{C}) \wedge(\mathbf{B} \rightarrow \mathbf{C}) \wedge(\mathbf{C} \rightarrow \mathbf{A})$ is equivalent to $(B \rightarrow C) \wedge A$
(ii) From the truth table in (i) above, determine the conjunctive normal form of the expression: $(\mathbf{B} \rightarrow \mathbf{C}) \wedge \mathbf{A}$.
(iii)Using the laws of equivalence, prove that $\mathbf{A} \rightarrow(\mathbf{B} \wedge \mathbf{C})$ is equivalent to $(\mathbf{A} \rightarrow \mathrm{B}) \wedge$ $(\mathbf{A} \rightarrow \mathrm{C})$. Show all your workings.
(iv) Given $(\mathbf{A} \wedge(\neg \mathbf{B} \vee \mathbf{C})),(\neg \mathbf{D} \rightarrow \mathbf{B})$ and $\neg \mathbf{C}$, use rules of inference to prove/deduce $(\mathrm{D} \wedge \mathrm{A})$. Show all your workings.
(v) Given $(\mathbf{P} \vee \mathbf{R}),(\mathbf{R} \leftrightarrow \neg \mathbf{Q} \wedge \mathbf{P})$ and $(\mathbf{P} \wedge \mathbf{Q} \rightarrow \neg \mathbf{R})$, prove/deduce $(\mathbf{R} \wedge \neg \mathbf{Q})$. Show all your workings.

QUESTION 5

(i) Consider the following arguments:

- Alice is a Math major. Therefore, Alice is either a Math major or a History major.
- If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
- If it snows today, the University will close. The University is not closed today. Therefore, it did not snow today.
- If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, if I go swimming, then I will sunburn.
(a) For each argument above, describe suitable propositional variables and then express each argument as a sequent.
(b) For each argument, state the rule of inference that is used to reach the conclusion?
(ii) State the resolution rule of inference, and use a truth table to verify the validity of the conclusion.
(iii) Use the resolution rule of inference to prove that given $(\mathbf{A} \wedge \mathbf{B}) \vee \mathbf{C}$ and $\mathbf{C} \rightarrow \mathbf{D}$, we can conclude $\mathbf{A} \vee D$. Show all your workings.

OUESTION 6

(i) Using binary arithmetic evaluate the binary arithmetic expression: $101110+$ 1101111
(ii) The binary ripple-carry addition algorithm used in (i), can be implemented using a one-bit full adder that takes two input bits \mathbf{a} and \mathbf{b}, and a carry-in bits c and compute a sum bit z and a carry-out bit d . The diagram below illustrates the input and outputs of a one-bit adder.

(a) Draw a truth table for the one-bit full-adder.
(b) Based on the truth table obtained in (a) write the logical expressions for the sum bitz and the carry-out bit d.
(c) Simplify the logical expressions obtained in (b), and draw one circuit diagram for the one-bit full adder.
(iii) Using a diagram similar to one shown above for the one-bit adder, draw a diagram that illustrates how a 3-bit adder could be implemented using a combination of one-bit adders.

