University of Swaziland Department Of Computer Science DECEMBER 2013

Title of paper:

Introduction to Logic

Course number:

CS235

Time Allowed:

Three (3) hours

Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

SPECIAL REQUIREMENT:

NO CALCULATORS ARE ALLOWED FOR THIS EXAMINATION PAPER.

This paper may not be opened until permission has been granted by the invigilator

(i) Define the following terms	
(a) Proposition	[2]
(b) Predicate	[2]
(c) Valid Argument	[2]
(d) Tautology	[2]
(e) Contingent	[2]
(ii) Let P = "Sipho is healthy"	
Q = "Sipho is wealthy"	
R = "Sipho is wise"	
Represent as propositional expressions the following statements:	
(a) Sipho is healthy and wealthy but not wise	[2]
(b) Sipho is not wealthy but he is healthy and wise	[2]
(c) Sipho is neither healthy nor wealthy nor wise	[2]
(iii) Consider the sentence: If the test is cancelled we shall have a party	7.
(a) Identify the atomic propositions in the sentence.	[2]
(b) Translate the sentence into a propositional form and write d	own its truth
table.	[2]
(iv) Define suitable predicates and then express the following statement	t as a logical
expression:	
All the boys failed the mathematics test.	[5]

4

2:

At University of Swaziland, students are registered in courses. At the end of the year, each course is allocated a mark, and a student is declared to have passed a course if the mark obtained in that course is greater than 50. A course can be supplemented if the mark is greater than 40 but less than 50.

Using prolog notation:

- (i) Define suitable ground predicates to express the following facts in a knowledge base:
 - Five (5) students: gugu, kim, joe, musa, fana, [3]
 - Three (3) courses): cs211, m220, b204 [2]
 - Five (5) student registration details. Each registration specifies the student name, the course and the mark obtained. A student may register for more than one course. Two of the students should not be registered in any course.
- (ii) Define a rule predicate, called pass (S,C), that returns true if student S registered in course C and passed the course. [3]
- (iii) Define a rule predicate, called supplement (S,C), that returns true if student S registered in course C, and can supplement the course. [3]
- (iv) Write a query for each of the following:- in each case indicate the expected result of the query [based on your facts in (i)].
 - (a) Determine if gugu is a student. [1]
 - (b) Determine if **fana** is registered in B204. [1]
 - (c) Find all courses that have a mark less than 30 [2]
 - (d) Find all students who failed some course [3]
 - (e) Find all students who are not registered in any course [3]

(i) Convert the decimal number 154 to its binary equivalent.	[2]
--	-----

- (ii) Convert the binary number **101110** to its hexadecimal equivalent. [3]
- (iii)Consider a Boolean function that takes 4 inputs representing the 4 binary digits of any integer number between 0 and 15. The function return true if the value of the integer number is a multiple of 3 (i.e. 3, 6, 9, etc), and false otherwise.

(a) Draw a truth table for the boolean function	ion.	[4]
(b) Based on the truth table obtained in (a)	above, write a logical exp	ressic
of the function in:		
• Conjunctive normal form.		[3]
• Disjunctive normal form.		[3]
(c) Use a Karnaugh map to obtain a minim	ized logical expression of	the
function.		[5]
(d) Based on your answer in (c) above, draw	w a circuit diagram that	
implements the function defined in (a).		[5]

QUESTION 4

4

(i) Using a truth table show that $(\mathbf{A} \lor \mathbf{C}) \land (\mathbf{B} \to \mathbf{C}) \land$	$(\mathbf{C} \rightarrow \mathbf{A})$ is equivalent to		
$(\mathbf{B} \rightarrow \mathbf{C}) \land \mathbf{A}$	[6]		
(ii) From the truth table in (i) above, determine the conjunctive normal form of the			
expression: $(\mathbf{B} \rightarrow \mathbf{C}) \land \mathbf{A}$.	[4]		
(iii) Using the laws of equivalence, prove that $A \rightarrow (B \land C)$ is equivalent to $(A \rightarrow B) \land$			
$(A \rightarrow C)$. Show all your workings.	[5]		
(iv) Given $(\mathbf{A} \land (\neg \mathbf{B} \lor \mathbf{C}))$, $(\neg \mathbf{D} \rightarrow \mathbf{B})$ and $\neg \mathbf{C}$, use rules of inference to prove/deduce			
$(\mathbf{D} \land \mathbf{A})$. Show all your workings.	[5]		
(v) Given $(\mathbf{P} \lor \mathbf{R})$, $(\mathbf{R} \leftrightarrow \neg \mathbf{Q} \land \mathbf{P})$ and $(\mathbf{P} \land \mathbf{Q} \rightarrow \neg \mathbf{R})$	R), prove/deduce $(\mathbf{R} \land \neg \mathbf{Q})$.		
Show all your workings.	[5]		

- (i) Consider the following arguments:
 - Alice is a Math major. Therefore, Alice is either a Math major or a History major.
 - If it is rainy, then the pool will be closed. It is rainy. Therefore, the pool is closed.
 - If it snows today, the University will close. The University is not closed today. Therefore, it did not snow today.
 - If I go swimming, then I will stay in the sun too long. If I stay in the sun too long, then I will sunburn. Therefore, if I go swimming, then I will sunburn.
 - (a) For each argument above, describe suitable propositional variables and then express each argument as a sequent. [8]
 - (b) For each argument, state the rule of inference that is used to reach the conclusion? [4]
 - (ii) State the resolution rule of inference, and use a truth table to verify the validity of the conclusion.
 - (iii) Use the resolution rule of inference to prove that given $(A \land B) \lor C$ and $C \rightarrow D$, we can conclude $A \lor D$. Show all your workings. [8]

- (i) Using binary arithmetic evaluate the binary arithmetic expression: 101110+
 1101111
 [4]
- (ii) The binary ripple-carry addition algorithm used in (i), can be implemented using a one-bit full adder that takes two input bits a and b, and a carry-in bits c and compute a sum bit z and a carry-out bit d. The diagram below illustrates the input and outputs of a one-bit adder.

6