University of Swaziland

Department of Computer Science

Final Examination

May 2014

TITLE OF PAPER:	COMPUTER ORGANISATION I
COURSE NUMBER:	CS 241
TIME ALLOWED:	3 HOURS
INSTRUCTIONS:	ANSWER ONE QUESTION FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B

This examination paper should not be opened until the invigilator grants permission.

CS 241 May 2014

.

SECTION A

QUESTION 1 – 25 MARKS (COMPULSORY)

А.	Explain with the aid of diagrams the layered organisation of machine levels	[4]
B.	What is the difference between translation and interpretation?	[2]
C .	Explain Moore's Law using processor speed as an example	[4]
D.	Draw and label the data path of a typical Von Neumann Machine	[6]
E.	Illustrate the problem of transferring data from a Big endian machine to a Little	
	endian machine using the integer 260.	[4]
F.	Discuss 3 principles to be considered during the design of an architecture of a CPU	
		[5]

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

QUESTION 2 – 25 MARKS

А.	Convert the following number 654 ₁₀ into the given radices:		
	i.	Hex	[2]
	ii.	Two's complement	[2]
B .	Prove	that $(m+r+1) \le 2^r$ determines the limit of check bits needed to correct sing	le
	errors		[4]
C.	Const	ruct the Hamming code for the following memory word 111100001	[4]
D.	How	can this code correct an error on bit 4.	[2]
E.	Desci	ibe the principle that makes cache memory to be effective	[2]
F.	What	is the major problem with a direct-mapped cache memory? Describe one of	the
	other	cache organisations and say why it does not suffer from the same problem.	[2]
G.	Cons	ider the operation of a machine with the basic Von Neumann data path. Supp	oose
	that loading the ALU input registers takes 5 nsec, running the ALU takes 10 nsec, and		, and
	storir	g the result back in the register scratchpad takes 5 nsec. What is the maximu	m
	numt	er of MIPS this machine is capable of in the absence of pipelining?	[4]
H.	With	the aid of a diagram, describe 2 differences between Raid level 0 and Raid	
	level	1	[3]

CS 241 May 2014

QUESTION 3 – 25 MARKS

A) Devise a 7 bit hamming code for the numbers from 0 to 8.

The above circuit diagram shows a *full adder*. The gates marked X are exclusive or (XOR) gates; those marked A are AND gates; the gate marked O is an OR.

Write out a truth table showing values of the sum and carry out for all the possible		
combinations of A, B and carry in.	[10]	

B) Disk performance is determined by a number of factors. What is the effect of the

following:

a.	Latency	[3]
b.	Seek time	[3]
C.	Number of Cylinders	[2]
d.	Sector size	[2]

CS 241 May 2014

[5]

QUESTION 4 - 25 MARKS

a)	Briefly describe the following storage devices:		
	CDROM, DVD	[2]	
b)	Distinguish between synchronous and asynchronous buses	[6]	
c)	Give brief definitions/ descriptions of the following:		
	i) Modulation	[2]	
	ii) Baud	[2]	
	iii) Duplex channel	[2]	
d)	Describe briefly how ADSL works	[3]	
e)	Identify character Codes	[2]	
f)	Describe with the aid of an illustration:		
	i) Multiplexer	[3]	
	ii) Decoder	[3]	

OUESTION 5 – 25 MARKS

- A. How long does it take to read a disk with 10,000 cylinders, each containing four track of 2048 sectors? First, all sectors of track 0 are to be read starting at sector 0, then all sectors of track 1 starting at sector 0, and so on. The rotation time is 10msec, and a seek takes 1msec between adjacent cylinders and 20 msec for the worst case. Switching between tracks of a cylinder can be done instantaneously.
- B. To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair amount of compression is required. Calculate the compression factor required. Assume that 3.5 GB of space is available for the video track, that the image resolution is 720 x 480 pixels with 24-bit color, and images are displayed at 30 frames /sec. [8]
- C. Describe with relevant illustrations, branch prediction, clearly distinguishing dynamic from static branching. [7]

END OF EXAM

----- TOTAL: 100 MARKS

CS 241 May 2014