University of Swaziland
 Department of Computer Science

Final Examination
May 2014

TITLE OF PAPER:

COURSE NUMBER:
CS 241

TIME ALLOWED:
 3 HOURS

INSTRUCTIONS: ANSWER ONE QUESTION FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B

This examination paper should not be opened until the invigilator grants permission.

SECTION A

QUESTION 1-25 MARKS (COMPULSORY)

A. Explain with the aid of diagrams the layered organisation of machine levels
B. What is the difference between translation and interpretation?
C. Explain Moore's Law using processor speed as an example
D. Draw and label the data path of a typical Von Neumann Machine
E. Illustrate the problem of transferring data from a Big endian machine to a Little endian machine using the integer 260.
F. Discuss 3 principles to be considered during the design of an architecture of a CPU

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

OUESTION 2-25 MARKS

A. Convert the following number 654_{10} into the given radices:

> i. Hex
ii. Two's complement
B. Prove that $(\mathrm{m}+\mathrm{r}+1) \leq 2^{\mathrm{r}}$ determines the limit of check bits needed to correct single errors.
C. Construct the Hamming code for the following memory word 111100001
D. How can this code correct an error on bit 4 .
E. Describe the principle that makes cache memory to be effective
F. What is the major problem with a direct-mapped cache memory? Describe one of the other cache organisations and say why it does not suffer from the same problem. [2]
G. Consider the operation of a machine with the basic Von Neumann data path. Suppose that loading the ALU input registers takes 5 nsec , rumning the ALU takes 10 nsec , and storing the result back in the register scratchpad takes 5 nsec . What is the maximum number of MIPS this machine is capable of in the absence of pipelining?
H. With the aid of a diagram, describe 2 differences between Raid level 0 and Raid level 1

QUESTION 3-25 MARKS

A) Devise a 7 bit hamming code for the numbers from 0 to 8 .

The above circuit diagram shows a full adder. The gates marked X are exclusive or (XOR) gates; those marked A are AND gates; the gate marked O is an OR.

Write out a truth table showing values of the sum and carry out for all the possible combinations of A, B and carry in.
B) Disk performance is determined by a number of factors. What is the effect of the following:
a. Latency
b. Seek time
c. Number of Cylinders
d. Sector size

OUESTION 4-25 MARKS

a) Briefly describe the following storage devices:
CDROM, DVD
b) Distinguish between synchronous and asynchronous buses
c) Give brief definitions/ descriptions of the following:
i) Modulation
ii) Baud
iii) Duplex channel
d) Describe briefly how ADSL works
e) Identify character Codes
f) Describe with the aid of an illustration:
i) Multiplexer
ii) Decoder

OUESTION 5-25 MARKS

A. How long does it take to read a disk with 10,000 cylinders, each containing four track of 2048 sectors? First, all sectors of track 0 are to be read starting at sector 0 , then all sectors of track 1 starting at sector 0 , and so on. The rotation time is 10 msec , and a seek takes 1 msec between adjacent cylinders and 20 msec for the worst case. Switching between tracks of a cylinder can be done instantaneously.
B. To be able to fit 133 minutes worth of video on a single-sided single-layer DVD, a fair amount of compression is required. Calculate the compression factor required. Assume that 3.5 GB of space is available for the video track, that the image resolution is 720×480 pixels with 24 -bit color, and images are displayed at 30 frames $/ \mathrm{sec}$. [
C. Describe with relevant illustrations, branch prediction, clearly distinguishing dynamic from static branching.

