University of Swaziland

Department of Computer Science

Supplementary Examination

2013/14

Title of Paper: Programming Languages

Course Number: CS343

Time Allowed: Three (3) hours

Instructions: 1) This paper has five (5) questions and each carries 25 marks.
2) Section A is COMPULSORY.
3) Answer any two (2) questions in Section B.

SECTION A (COMPULSORY)

Question 1

a) What is a semantic gap?
[2 marks]
b) Discuss the two (2) main reasons why natural language is unsuitable for writing computer instructions/programs?
c) Low level (LL) programming is often avoided, discuss the four (4) main reasons why this is so. [8 marks]
d) Distinguish between a compiler and an interpreter, stating the advantages of using each.
e) What is the difference between semantics and syntax?
f) Define the following concepts:

I. Axiomatic semantics	[2 marks]
II. Denotational semantics	[2 marks]

Question 2

a) Write a Haskell expression of the form:
let $a=a n y$ number ; $b=a n y$ number ; $c=a n y$ number
in ...
that returns the difference between the highest and lowest of the 3 given numbers $(a, b$ and c).
[5 marks]
b) Write a Haskell expression of the form:
let chars=any string ;
counts=any list of positive integers
in ...
that returns a list of strings. Specifically, the i-th item of the returned list must consist of the i-th character of chars repeated a number of times equal to the i-th item of counts. E.g. if chars is "Hoho!" and counts is [2,1,2,1,3], the expression must evaluate to ["HH",
" o ", "hh", " o ", "!!!"]. You are permitted to assume that chars and counts will always be of equal length, and that counts will never contain zero or negative numbers.
[8 marks]
c)

The adjoining map shows 5 roads connecting 6 towns in Swaziland. Represent information about the roads by writing 5 Prolog facts, each of the form: road(Town1, Town2)
where Town1 and Town2 are the two towns connected by the road. [5 marks]
d) Define a Prolog rule of the form:
nearby (Town, Num) :- ...
that succeeds when Num is the number of towns directly linked to the given Town. E.g. based on the above map, the query nearby (mnz, 3) must succeed. [7 marks]

SECTION B

Question 3

a) Give a clear distinction between the following, giving examples of code where appropriate:
I. Untyped and typed languages. [5 marks]
II. Primitive and user-defined types. [6 marks]
III. Static and dynamic typing.
[6 marks]
b) Discuss the following kinds of polymorphism:
I. Overloading Polymorphism
II. Conversion Polymorphism
III. Parametric Polymorphism
[3 marks]
[3 marks]
[2 marks]

Question 4

a) State and discuss the three properties of an object. [6 marks]
b) Discuss the imperative paradigm. [3 marks]
c) Structured programming has three (3) main "good practices", name them and then give a clear discussion of each.
d) In C++ inclusion polymorphism (IP) is the most important form of polymorphism. Discuss inclusion polymorphism, giving an appropriate example. [4 marks]
e) In C++ multiple inheritance introduces a problem, state and discuss this problem.

Question 5

a) State and discuss the two (2) main characteristics of functional programming.
[6 marks]
b) What are the 2 main components of a logic programming system? [2 marks]
c) What is the difference between unification and backtracking?
[2 marks]
d) Describe in detail the structure of Lambda calculus expressions, as well as the method by which the expressions are evaluated (reduced to normal form).
[10 marks]
e) Show how the following λ-calculus expression is reduced to normal form:

