University of Swaziland

Department of Computer Science

Supplementary Examination

2013/14

Title of Paper: Programming Languages

Course Number: CS343

Time Allowed: Three (3) hours

Instructions: 1) This paper has five (5) questions and each carries 25 marks.

2) Section A is **COMPULSORY**.

3) Answer any two (2) questions in Section B.

You are not allowed to open this paper until you have been told to do so by the invigilator.

Question 1

a) What is a semantic gap?	[2 marks]
b) Discuss the two (2) main reasons why natural language is computer instructions/programs?	unsuitable for writing [4 marks]
c) Low level (LL) programming is often avoided, discuss the four this is so.	(4) main reasons why [8 marks]
d) Distinguish between a compiler and an interpreter, stating the advantages of us each. [5 marks]	
e) What is the difference between semantics and syntax?	[2 marks]

f) Define the following concepts:

۱.	Axiomatic semantics	[2 marks]

II. Denotational semantics [2 marks]

Question 2

a) Write a Haskell expression of the form: let a=any number; b=any number; c=any number

in ...

that returns the difference between the highest and lowest of the 3 given numbers (a, b and c). [5 marks]

b) Write a Haskell expression of the form: let chars=*any string* ;

counts=any list of positive integers

in ...

that returns a list of strings. Specifically, the *i*-th item of the returned list must consist of the *i*-th character of chars repeated a number of times equal to the *i*-th item of counts. E.g. if chars is "Hoho!" and counts is [2,1,2,1,3], the expression must evaluate to ["HH", "o", "hh", "o", "!!!"]. You are permitted to assume that chars and counts will always be of equal length, and that counts will never contain zero or negative numbers.

[8 marks]

The adjoining map shows 5 roads connecting 6 towns in Swaziland. Represent information about the roads by writing 5 Prolog facts, each of the form: road(Town1, Town2)

where Town1 and Town2 are the two towns connected by the road. [5 marks]

d) Define a Prolog rule of the form: nearby (Town, Num) :- ...

that succeeds when Num is the number of towns directly linked to the given Town. E.g. based on the above map, the query nearby (mnz, 3) must succeed. [7 marks]

Question 3

b)

a) Give a clear distinction between the following, giving examples of code where appropriate:

١.	Untyped and typed languages.	[5 marks]	
11.	Primitive and user-defined types.	[6 marks]	
111.	Static and dynamic typing.	[6 marks]	
Discuss the following kinds of polymorphism:			

I. Overloading Polymorphism [3 ma	rks]
-----------------------------------	------

11.	Conversion Polymorphism	[3 marks]
	•	

III. Parametric Polymorphism [2 marks]

Question 4

a) State and discuss the three properties of an object. [6 marks]
b) Discuss the imperative paradigm. [3 marks]
c) Structured programming has three (3) main "good practices", name them and then give a clear discussion of each. [9 marks]

d) In C++ inclusion polymorphism (IP) is the most important form of polymorphism. Discuss inclusion polymorphism, giving an appropriate example. [4 marks]

e) In C++ multiple inheritance introduces a problem, state and discuss this problem.

[3 marks]

Question 5

a) State and discuss the two (2) main characteristics of functional programming.

		[6 marks]	
	b) What are the 2 main components of a logic programming system?	[2 marks]	
	c) What is the difference between unification and backtracking?	[2 marks]	
	d) Describe in detail the structure of Lambda calculus expressions, as we	ns, as well as the method	
,	by which the expressions are evaluated (reduced to normal form).	[10 marks]	

e) Show how the following λ -calculus expression is reduced to normal form: ((($\lambda x.x$) ($\lambda y.y^*y$)) (($\lambda z.z+1$) 2)) [5 marks]

End!!!