UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

FINAL EXAMINATION, MAY 2015

Title of Paper	:	Computer Graphics
Course Number	:	CS246
Time Allowed	•	Three (3) Hours
Instructions	:	Answer ALL questions in Section A Answer only THREE questions from Section B All questions are worth 20 marks
Special requirement	•	Graph paper

••• •••

This paper should not be opened until permission has been granted by the invigilator.

SECTION A Answer all questions from this section.

Question 1.

(a)	State what API stands for, and define it.	[6]
(b)	Why don't we see the colour black yet recognize?	[3]
(c)	Why should we study user interfaces alongside computer graphics?	[3]
(d)	Describe macho language and discuss why it is not encouraged in UI.	[5]
e)	Why was vector graphics discontinued?	[3]

Question 2

.

(a)	How does computer graphics differ from image processing?	[5]
(b)	Why was vector graphics not of widespread usage during its era?	[6]
2 N	\mathbf{D} (1) $\mathbf{O}\mathbf{D}\mathbf{T}$ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	101

(c) Draw the CRT input signals for the following output (on graph paper): [9]

SECTION B Answer any three questions from this section.

Question 3

Į

- (a) In what way(s) was vector graphics displays superior to printers? [4]
- (b) Sizes of CRTs are normally given by the length of their diagonal (the ratio of the width and height is standardized at 2:3). With a 14" tube and a 640 x 480 frame buffer, what are the horizontal and vertical resolutions? How could an aspect ratio of 1:1 be achieved on such a screen? [10]
- (c) How much memory is needed for a 640×480 frame buffer with depth 2? [6]

ø

Question 4

(a) Describe how a CRT works. [12]
(b) Show that the Bresenham line drawing algorithm is purely integer arithmetic i.e., there are no fractions, no divisions nor multiplications in it. [8]

Question 5

- (a) Find the transformation matrix for rotation around an arbitrary point (x, y) over an arbitrary angle Φ . [6]
- (b) Compute the coordinates of the image of (3, 2) after each of the following transformations:
 - rotation around the point (4, 1) through an angle of 90°;
 - rotation around the point (3, 2) through an angle of 30° . [6]
- (c) Establish and briefly describe all the possible segment-segment relations. [8]

Question 6

(a)	Group, describe and differentiate the following devices: scanner, loudspeak				
	glove, plotter, and frame-grabber.	[10]			
(b)	Briefly discuss any four user interface design principles.	[10]			