# University of Swaziland Department Of Computer Science DECEMBER 2015 

Title of paper:
Course number:
Time Allowed:

## Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

This paper may not be opened until permission has been granted by the invigilator

## QUESTION 1

(a) What is a formal language
(b) With the aid of an example, explain the difference between a non-deterministic pushdown automata (NPDA) and a non-deterministic finite acceptor(NFA)
(c) Construct a NFA for each of the following regular expressions over the alphabet $\Sigma=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
(i) $r=\emptyset+\mathrm{a}$
(ii) $r=a^{*} b+b c$
(d) Consider the grammar $\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$ where the production rules are:
$\mathrm{S} \rightarrow \mathrm{aS}, \mathrm{S} \rightarrow \mathrm{bS}, \mathrm{S} \rightarrow \lambda$.
(i) Is G a linear grammar? Explain your answer.
(ii) List four different strings of length 4 or more that can be generated by the grammar G .
(iii) Construct a finite automaton that accepts the language generated by the grammar G.
(e) Consider the finite automaton.

(i) Write the regular expression for the language accepted by the automaton.[4]
(ii) Write the regular grammar for the language accepted by the automaton. [4]
(iii)Describe the language accepted by the finite automaton.

## QUESTION 2

(a) Describe the language generated by the grammar $\mathrm{G}=(\{\mathrm{S}\},\{0,1\}, \mathrm{S}, \mathrm{P})$ where the production rules P are $\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 11$
(b) Construct a transition graph for the finite automaton that accepts the language generated by the following grammar: $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$ where the production rules are $\mathrm{S} \rightarrow \mathrm{bbA}, \mathrm{S} \rightarrow \mathrm{abB}, \mathrm{A} \rightarrow \mathrm{abaS}, \mathrm{B} \rightarrow \mathrm{babS}, \mathrm{S} \rightarrow \lambda$
(c) ...
(i) Construct a transition graph for the finite automata $M=\left(\left\{q_{0}, q_{1}\right\},\{a, b, c\}\right.$, $\delta, \mathrm{q}_{0},\left\{\mathrm{q}_{1}\right\}$ ) where $\delta$ is defined by the following transition table:

| $\boldsymbol{\delta}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{q}_{\mathbf{0}}$ | $\left\{q_{0}, q_{1}\right\}$ | $\left\{q_{1}\right\}$ | $\left\{q_{1}\right\}$ |
| $\mathbf{q}_{1}$ |  | $\left\{q_{0}, q_{1}\right\}$ | $\left\{q_{1}\right\}$ |

(ii) Convert the NFA obtained in (i) above to a deterministic finite automaton?
(f) Consider the following Non-Deterministic Pushdown automata M

(i) Show the sequence of moves in accepting the string aaabc
(ii) List 3 more strings that are accepted by M .
(iii)Write a the grammar for the language accepted by $M$.

## OUESTION 3

(d) Write the design of a Turing Machine (TM) to compute $f(x)=x+y$.

Assume x and y to be a non zero positive integer in unary representation. [5]
(b) Consider the grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}\},,\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$ where the production rules are:

$$
\begin{aligned}
& S \rightarrow a A \mid a B B \\
& A \rightarrow a a A \mid \lambda \\
& B \rightarrow b B \mid b b C \\
& C \rightarrow B
\end{aligned}
$$

(i) Eliminate all unit productions, all useless productions, and $\lambda$-productions from the grammar G. Show all your workings.
(ii) Transform the grammar G, given above, into Chomsky Normal Form (CNF)? [5]
(iii) Transform the grammar G, given above,, into Greibach Normal Form (GNF). [5]

## QUESTION 4

(a) Construct a Non-Deterministic Pushdown automaton (npda) that accept the following languages on $L_{1}=L\left(b a a^{*} b\right)$
(b) Construct a Non-Deterministic Pushdown automata (npda) that accept the language generated by each of the following grammar: $S \rightarrow a S a A|A, A \rightarrow a A b| b$
(c) Write the design of a Turing Machine (TM) to compute $F(x)=2 x+1$

Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the value of x as 1111 and 111111 (in unary representation) for your Turing Machine.

## QUESTION 5

(a) With the aid of an example, explain what is meant ambiguity in grammars and languages.
(b) The Swaziland Government uses two formats for Vehicle Registration Numbers. The general format for public or privately owned vehicles starts with 3 letters, followed by 3 digits and 2 letters. Examples are: ASD380OS, BSD278BM, XSD272AM. Government owned cars have a similar format but the first letter is always the letter G, and the last two letters indicate the ministry/dapartment that owns the vehicle. Examples are: GSD101HE, GSD008TI, GSD272WO where HE, TI and WO are special codes fron the Ministry of Health, Tinkhunda and Works and Transport.

Using Backus Naur Form (BNF) notation, write a Context free Grammar that could be used to generate the Swaziland Vehicle Registration numbers.

> [6]
(c) Using extended BNF notation, write grammar production rules, and the corresponding syntax diagrams, for the following C/C++ constructs. YOU DO NOT NEED TO WRITE THE RULES FOR ALL OTHER POSSIBLE STATEMENT.
(i) if-else statement
(ii) while statement
(iii)for statement
(d) With the aid of examples, explain the nature and main cause of the dangling-else problem in some computer programming languages such as $\mathrm{C}, \mathrm{C}++$ and Java. Explain two possible solutions to this problem.

## QUESTION 6

(a) Design a deterministic pushdown automaton (DPDA) to recognize the language

$$
L=\left\{w \in a^{2 n} b^{n}, n \geq 0\right\}
$$

Give functional steps and clearly describe as to how your DPDA accepts strings in $L$ and rejects strings not in L. Write instantaneous descriptions for $w_{1}=a a a a b b$ and $w_{2}=a a b$
(b) Design a non deterministic pushdown automaton (NDPA) to recognize the language generated by the grammar $G(\{S, Z, B\},\{a, b\}, S, P)$ where the set of productions $P$ is:
$S \rightarrow a B Z|a Z| a B \mid a$
$B \rightarrow b B \mid b$
$Z \rightarrow a B Z|a Z| B Z \mid a$

Write instantaneous descriptions for $w=a a b$.

