University of Swaziland Department Of Computer Science DECEMBER 2015

Title of paper:

Theory of Computation

Course number:

CS211

Time Allowed:

Three (3) hours

Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

This paper may not be opened until permission has been granted by the invigilator

(a)	What is a formal language	[1]	
(b)	th the aid of an example, explain the difference between a non-deterministic		
	pushdown automata (NPDA) and a non-deterministic finite acceptor(NFA)	[2]	
(c)	Construct a NFA for each of the following regular expressions over the alphabet $\sum =$		
	{a, b,c}		
	(i) $r = \phi + a$	[2]	
	(ii) $r = a^*b + bc$	[3]	
(d)	Consider the grammar G = ({S}, {a,b}, S, P) where the production rules are:		
	$S \rightarrow aS, S \rightarrow bS, S \rightarrow \lambda.$		
	(i) Is G a linear grammar? Explain your answer.	[2]	
	(ii) List four different strings of length 4 or more that can be generated by the		
	grammar G.	[2]	
	(iii) Construct a finite automaton that accepts the language generated by the grammar		
	G.	[3]	

(e) Consider the finite automaton.

(i) Write the regular expression for the language accepted by the automaton.[4]

(ii) Write the regular grammar for the language accepted by the automaton. [4]

(iii)Describe the language accepted by the finite automaton. [2]

- (a) Describe the language generated by the grammar $G = (\{S\}, \{0,1\}, S, P)$ where the production rules P are $S \rightarrow 0S1 \mid 11$ [2]
- (b) Construct a transition graph for the finite automaton that accepts the language generated by the following grammar: G = ({S, A, B}, {a,b}, S, P) where the production rules are S → bbA, S → abB, A → abaS, B→ babS, S→ λ [4]

(c) ...

(i) Construct a transition graph for the finite automata $M = (\{q_0, q_1\}, \{a, b, c\}, \delta, q_0, \{q_1\})$ where δ is defined by the following transition table:

[2]

δ	a	b	c
qo	$\{q_0, q_1\}$	{q ₁ }	{ q ₁ }
q 1		${q_0, q_1}$	{ q ₁ }

- (ii) Convert the NFA obtained in (i) above to a deterministic finite automaton? [5]
- (f) Consider the following Non-Deterministic Pushdown automata M

- (i) Show the sequence of moves in accepting the string *aaabc* [5]
 (ii) List 3 more strings that are accepted by M. [2]
 (iii) Write a the accepted for the horizontal back [5]
- (iii)Write a the grammar for the language accepted by M. [3]

- (d) Write the design of a Turing Machine (TM) to compute f(x) = x + y. Assume x and y to be a non zero positive integer in unary representation. [5]
- (b) Consider the grammar G = ({S, A, B, C,}, {a,b}, S, P) where the production rules are:
 - $S \rightarrow aA \mid aBB$ $A \rightarrow aaA \mid \lambda$ $B \rightarrow bB \mid bbC$ $C \rightarrow B$
 - (i) Eliminate all unit productions, all useless productions, and λ-productions from the grammar G. Show all your workings. [10]
 - (ii) Transform the grammar G, given above, into Chomsky Normal Form (CNF)? [5]
 - (iii) Transform the grammar G, given above,, into Greibach Normal Form (GNF). [5]

QUESTION 4

- (a) Construct a Non-Deterministic Pushdown automaton (npda) that accept the following languages on L₁ = L(baa*b) [5]
- (b) Construct a Non-Deterministic Pushdown automata (npda) that accept the language generated by each of the following grammar: $S \rightarrow aSaA \mid A, A \rightarrow aAb \mid b$

[5]

(c) Write the design of a Turing Machine (TM) to compute F(x) = 2x + 1Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the value of x as 1111 and 111111 (in unary representation) for your Turing Machine. [15]

4

- (a) With the aid of an example, explain what is meant ambiguity in grammars and languages.
 [3]
- (b) The Swaziland Government uses two formats for Vehicle Registration Numbers. The general format for public or privately owned vehicles starts with 3 letters, followed by 3 digits and 2 letters. Examples are: ASD380OS, BSD278BM, XSD272AM. Government owned cars have a similar format but the first letter is always the letter G, and the last two letters indicate the ministry/dapartment that owns the vehicle. Examples are: GSD101HE, GSD008TI, GSD272WO where HE, TI and WO are special codes fron the Ministry of Health, Tinkhunda and Works and Transport.

Using Backus Naur Form (BNF) notation, write a Context free Grammar that could be used to generate the Swaziland Vehicle Registration numbers.

[6]

(c) Using extended BNF notation, write grammar production rules, and the corresponding syntax diagrams, for the following C/C++ constructs. YOU DO NOT NEED TO WRITE THE RULES FOR ALL OTHER POSSIBLE STATEMENT.

(i) if -else statement	[3]
(ii) while statement	[4]
(iii)for statement	[4]

(d) With the aid of examples, explain the nature and main cause of the dangling-else problem in some computer programming languages such as C, C++ and Java. Explain two possible solutions to this problem.

(a) Design a deterministic pushdown automaton (DPDA) to recognize the language

$$L = \{ w \in a^{2n}b^n, n \ge 0 \}$$

Give functional steps and clearly describe as to how your DPDA accepts strings in L and rejects strings not in L. Write instantaneous descriptions for $w_1 = aaaabb$ and $w_2 = aab$ [13]

(b) Design a non deterministic pushdown automaton (NDPA) to recognize the language generated by the grammar G ({S,Z,B}, {a,b}, S, P) where the set of productions P is:

 $S \rightarrow aBZ \mid aZ \mid aB \mid a$ $B \rightarrow bB \mid b$ $Z \rightarrow aBZ \mid aZ \mid BZ \mid a$

Write instantaneous descriptions for w = aaab.

[12]

٨