University of Swaziland Department Of Computer Science JUNE/JULY 2016

Title of paper:

Theory of Computation

Course number:

CS211

Time Allowed:

Three (3) hours

Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

This paper may not be opened until permission has been granted by the invigilator

(a) What is a formal language	[2]
(b) Let r be an expression. When is r said to be a regular expression over an alphabet \sum .	[2]
(c) With the aid of an example, explain the difference between a deterministic finite acceptor (DFA) and
a non-deterministic finite acceptor(NFA)	[3]
(d) Construct a NFA for each of the following regular expressions over the alphabet $\sum = \{a, b, c\}$	}
(i) $\mathbf{r} = \Phi$	[2]
(ii) $r = ab + c^*$	[3]

- (iii)r = bc*a
- (e) Consider the following finite automaton.

[3]

[2]

- (i) Write the regular expression for the language accepted by the automaton. [4]
- (ii) Write the regular grammar for the language accepted by the automaton. [4]

(iii)Describe the language accepted by the finite automaton.

QUESTION 2

- (a) Write the design of a Turing Machine (TM) to compute F(x) = 3x + 1. Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the value of x as 1111 and 111111 (in unary representation) for your Turing Machine. [15]
- (b) With the aid of an example, explain what is meant ambiguity in grammars and languages. [5]
- (c) With the aid of examples, explain the nature and main cause of the dangling-else problem in some computer programming languages such as C, C++ and Java. Explain two possible solutions to this problem. [5]

(a) Consider the following Grammar G = ({S}, {0,1}, S, P) where the production rules P are $S \rightarrow 11$	S0 0
(i) List four different strings generated by the grammar G.	[2]
(ii) Describe the language generated by the grammar G	[2]
(iii)Is G a linear grammar? Explain your answer.	[2]
(iv) Draw a transition graph for the finite automaton that accepts the language generated by the	
grammar G.	[3]
(v) Is G a right linear grammar? If not, write an equivalent right linear grammar for G. Show all y	/our
working.	[3]

(b) Consider the following grammar:

٠.

 $S \rightarrow aABB \mid aAA$ $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$

aaaaa and aabaaa	[4]
(iii) Show the sequence of moves taken by the npda in accepting the two of the string:	
(ii) List four strings of length 7 or more that are accepted by G.	[4]
grammar G.	[5]
(i) Construct a nondeterministic pushdown automaton (npda) that accepts the language generated by the	

QUESTION 4

- (a) Using extended BNF notation, write grammar production rules, and the corresponding syntax diagrams, for the following C/C++ constructs. YOU DO NOT NEED TO WRITE THE RULES FOR ALL OTHER POSSIBLE STATEMENT.
 - (i) if -else statement [5]
 - (ii) while statement [5]
- (b) Design a deterministic pushdown automaton (DPDA) to recognize the language

$$L = \{ w \in a^n b^{3n}, n \ge 0 \}$$

Give functional steps and clearly describe as to how your DPDA accepts strings in L and rejects strings not in L. Write instantaneous descriptions for $w_1 = aabbbbbb$ and $w_2 = abbb$ [15]

(a) Consider the finite automatom $M = (\{q_0, q_1\}, \{a, b, c\}, \delta, q_0, \{q_1\})$ where δ is defined by the following transition table:

δ	a	b	c
q ₀	$\{q_0, q_1\}$	$\{q_1\}$	
q 1		${q_0, q_1}$	$\{q_1\}$

(i)	What are the key features of a deterministic finite automaton? Explain why M is not a	e key features of a deterministic finite automaton? Explain why M is not a	
	deterministic finite automaton.	[5]	
(ii)	Construct a transition graph for the finite automata M.	[3]	
(iii)	Convert the NFA obtained in (i) above to a deterministic finite automaton?	[5]	

(b) Consider the following Non-Deterministic Pushdown automata M

۲.

(i) Show the sequence of moves in accepting the string <i>aabbaa</i> . Show all your steps.	[4]
(ii) List 3 more strings that are accepted by M.	[3]
(iii)Write a textual description of the language L(M) accepted by M.	[2]
(iv)Write a grammar for the language accepted by M.	[3]

- (a) Write the design of a Turing Machine (TM) that accepts $L = \{a^n b^n : n \ge 1\}$. Write the instantaneous description when the input is aaabbb [10]
- (b) Consider the grammar $G = (\{S, A, B, C,\}, \{a,b\}, S, P)$ where the production rules are:

 $S \rightarrow abAB$ $A \rightarrow bAB \mid \lambda$ $B \rightarrow BAa \mid A \mid \lambda$

- (i) Eliminate all unit productions, all useless productions, and λ-productions from the grammar G. Show all your workings.
 (ii) Transform the grammar G, given above, into Chomsky Normal Form (CNF)?
 [5]
- (iii) Transform the grammar G, given above,, into Greibach Normal Form (GNF). [5]