# University of Swaziland Department Of Computer Science JUNE/JULY 2016 

Title of paper: Theory of Computation<br>Course number: CS211<br>Time Allowed: $\quad$ Three (3) hours

## Instructions:

- This paper consists of six (6) questions.
- Each question is worth 25 marks
- Answer any four (4) questions from questions 1 to 6.

This paper may not be opened until permission has been granted by the invigilator

## QUESTION 1

(a) What is a formal language
(b) Let $r$ be an expression. When is $r$ said to be a regular expression over an alphabet $\sum$.
(c) With the aid of an example, explain the difference between a deterministic finite acceptor (DFA) and a non-deterministic finite acceptor(NFA)
(d) Construct a NFA for each of the following regular expressions over the alphabet $\sum=\{a, b, c\}$
(i) $\mathrm{r}=\Phi$
(ii) $r=a b+c^{*}$
(iii) $r=b c^{*}$
(e) Consider the following finite automaton.

(i) Write the regular expression for the language accepted by the automaton.
(ii) Write the regular grammar for the language accepted by the automaton.
(iii)Describe the language accepted by the finite automaton.

## OUESTION 2

(a) Write the design of a Turing Machine (TM) to compute $F(x)=3 x+1$. Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the value of x as 1111 and 111111 (in unary representation) for your Turing Machine.
(b) With the aid of an example, explain what is meant ambiguity in grammars and languages.
(c) With the aid of examples, explain the nature and main cause of the dangling-else problem in some computer programming languages such as $\mathrm{C}, \mathrm{C}++$ and Java. Explain two possible solutions to this problem.

## QUESTION 3

(a) Consider the following $\operatorname{Grammar} \mathrm{G}=(\{\mathrm{S}\},\{0,1\}, \mathrm{S}, \mathrm{P})$ where the production rules P are $\mathrm{S} \rightarrow 11 \mathrm{~S} 0 \mid 0$
(i) List four different strings generated by the grammar $G$.
(ii) Describe the language generated by the grammar $G$
(iii)Is G a linear grammar? Explain your answer.
(iv) Draw a transition graph for the finite automaton that accepts the language generated by the grammar G.
(v) Is G a right linear grammar? If not, write an equivalent right linear grammar for G . Show all your working.
(b) Consider the following grammar:

$$
S \rightarrow a A B B \mid a A A
$$

$$
\mathrm{A} \rightarrow \mathrm{aBB} \mid \mathrm{a}
$$

$$
\mathrm{B} \rightarrow \mathrm{bBB} \mid \mathrm{A}
$$

(i) Construct a nondeterministic pushdown automaton (npda) that accepts the language generated by the grammar G .
(ii) List four strings of length 7 or more that are accepted by G.
(iii) Show the sequence of moves taken by the npda in accepting the two of the string: aaaaa and aabaaa

## QUESTION 4

(a) Using extended BNF notation, write grammar production rules, and the corresponding syntax diagrams, for the following $\mathrm{C} / \mathrm{C}++$ constructs. YOU DO NOT NEED TO WRITE THE RULES FOR ALL OTHER POSSIBLE STATEMENT.
(i) if -else statement
(ii) while statement
(b) Design a deterministic pushdown automaton (DPDA) to recognize the language

$$
L=\left\{w \in a^{n} b^{3 n}, n \geq 0\right\}
$$

Give functional steps and clearly describe as to how your DPDA accepts strings in $L$ and rejects strings not in
L. Write instantaneous descriptions for $w_{1}=a a b b b b b b$ and $w_{2}=a b b b$

## QUESTION 5

(a) Consider the finite automatom $M=\left(\left\{q_{0}, q_{1}\right\},\{a, b, c\}, \delta, q_{0},\left\{q_{1}\right\}\right)$ where $\delta$ is defined by the following transition table:

| $\boldsymbol{\delta}$ | $\mathbf{a}$ | $\mathbf{b}$ | $\mathbf{c}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{q}_{\mathbf{0}}$ | $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$ | $\left\{\mathrm{q}_{1}\right\}$ |  |
| $\mathbf{q}_{\mathbf{1}}$ |  | $\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$ | $\left\{\mathrm{q}_{1}\right\}$ |

(i) What are the key features of a deterministic finite automaton? Explain why $M$ is not a deterministic finite automaton.
(ii) Construct a transition graph for the finite automata M.
(iii) Convert the NFA obtained in (i) above to a deterministic finite automaton?
(b) Consider the following Non-Deterministic Pushdown automata M

(i) Show the sequence of moves in accepting the string abbaa. Show all your steps.
(ii) List 3 more strings that are accepted by M .
(iii) Write a textual description of the language $L(M)$ accepted by $M$.
(iv) Write a grammar for the language accepted by $M$.

## QUESTION 6

(a) Write the design of a Turing Machine (TM) that accepts $L=\left\{a^{n} b^{n}: n>=1\right\}$. Write the instantaneous description when the input is aabbbb
(b) Consider the grammar $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}\},,\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P})$ where the production rules are:

$$
\begin{aligned}
& S \rightarrow a b A B \\
& A \rightarrow b A B \mid \lambda \\
& B \rightarrow B A a|A| \lambda
\end{aligned}
$$

(i) Eliminate all unit productions, all useless productions, and $\lambda$-productions from the grammar G . Show all your workings.
(ii) Transform the grammar G, given above, into Chomsky Normal Form (CNF)?
(iii) Transform the grammar G, given above,, into Greibach Normal Form (GNF).

