UNIVERSITY OF SWAZILAND

Faculty of Science Department of Computer Science MAIN EXAMINATION December 2015

<u>Title of Paper</u>: COMPUTER ORGANISATION II

Course Number: CS341

Time Allowed: 3 hours

Total Marks: 100

Instructions to candidates:

This question paper consists of **FIVE (5)** questions.

ANSWER ONE QUESTION FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B

All questions carry equal marks.

SPECIAL REQUIREMENTS:

NO CALCULATORS ALLOWED

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Page 1 of 4

SECTION A

QUESTION 1 (COMPULSORY)

A) An instruction set has 4 bits for *opcode* and 32 bits for addresses. What percentage change in instructions and memory resolution results if the *opcode* is increased by 2 bits without altering the instruction length (by taking bits from address portion). [4]

B) Compare using the aid of suitable diagrams:

i)	multiprocessor and multicomputer	[4]
ii).	Strict consistency and release consistency	[4]
iii).	Cache miss and page fault	[4]
iv).	Conditional and unconditional branching	[4]

C) Write the integer 255 in binary notation and in binary coded decimal (BCD). How does this example demonstrate the inefficiency of the BCD? [2]

D) Discuss the advantages and disadvantages of minimizing the length of an instruction format. [3]

SECTION B (ANSWER ANY *THREE* QUESTIONS FROM THIS SECTION)

QUESTION 2

A)	Describe what is meant by Instruction Set Architecture (ISA). In addition briefly describe any 3 sections you would expect to see in an ISA specification document.	[5]
B)	Explain one advantage and one disadvantage of the ASCII system compared with Unicode.	[2]
C)	Define any 5 addressing modes.	[5]
D)	 Design an instruction set format for an architecture with a 21-bit instruction word. Earegister operand must be encoded in 6 bits, and each address operand in 10 bits. There are 3 kinds of instructions: 2 instructions take 3 register operands. 6 instructions take 1 register operand and 1 address operand. 256 instructions take 1 address operand. 	

QUESTION 3

- A) Briefly explain how the concept of speculative execution is useful in improving performance. [5]
- B) Evaluate the following arithmetic expression into Decimal.

$$121_{16} + 122_{10} - 123_{8}$$
 [5]

C) Evaluate the following reverse polish expression, where each number is a (decimal) digit.

$$ABCDE*F/+G-H/*+$$
[5]

D) Convert into reverse polish notation the following infix expression (where operators have their usual/normal precedence) $(2x \ 3 + 4)-(4/2 + 1)$. Generate IJVM code to evaluate it. Show values in the Stack during the evaluation. [10] *(See the IJVM instruction set on last page)*

QUESTION 4

- A) Give the IJVM code to evaluate the following expression to calculate the perimeter of a rectangle: P = 2 (A + B), where A and B are the dimensions (length and width). Assume A and B are assigned the values 3 and 8 respectively. Also use diagrams to show what will be happening on the stack. [8]
- B) What does the hypothetical machine instruction ADD [R2], [R3], Rl do? [3]
- C) What is the main purpose of the sequencer and the control store? [4]
- D) What is the data hazard/dependency in a pipelined system and how can its effects be overcome? [4]
- E) Describe the immediate, direct and indirect addressing modes. [6]

QUESTION 5

A) Using Amdahl's law on a given program which has 50% sequential code and 50% parallel:

i. What is the speed up anticipated with two processors?[5]ii. What about 4 processors?[4]

- iii. How many processors would result in a 4-fold speedup?
- B) Four (4) CPU s are connected by a bus whose bandwidth is *r* MB/sec, by what percentage has the bandwidth changed if the system is scaled to 22 CPUs. [6]
- C) Suppose that for technical reasons it is only possible for a snooping cache to snoop on the address lines, not data lines. Would this change affect the *write through* protocol?
 [6]

<< End of Question Paper >>

[4]