UNIVERSITY OF SWAZILAND

Faculty of Science
 Department of Computer Science MAIN EXAMINATION December 2015

Title of Paper: COMPUTER ORGANISATION II

Course Number: CS341

Time Allowed: 3 hours
Total Marks: 100

Instructions to candidates:

This question paper consists of FIVE (5) questions.
ANSWER ONE QUESTION FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B All questions carry equal marks.

SPECIAL REQUIREMENTS:

NO CALCULATORS ALLOWED

[^0]
SECTION A

QUESTION 1 (COMPULSORY)

A) An instruction set has 4 bits for opcode and 32 bits for addresses. What percentage change in instructions and memory resolution results if the opcode is increased by 2 bits without altering the instruction length (by taking bits from address portion).
B) Compare using the aid of suitable diagrams:
i) multiprocessor and multicomputer
[4]
ii). Strict consistency and release consistency
iii). Cache miss and page fault
[4]
iv). Conditional and unconditional branching
[4]
C) Write the integer 255 in binary notation and in binary coded decimal (BCD). How does this example demonstrate the inefficiency of the BCD?
D) Discuss the advantages and disadvantages of minimizing the length of an instruction format.

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

QUESTION 2

A) Describe what is meant by Instruction Set Architecture (ISA). In addition briefly describe any 3 sections you would expect to see in an ISA specification document.
B) Explain one advantage and one disadvantage of the ASCII system compared with Unicode.
C) Define any 5 addressing modes.
D) Design an instruction set format for an architecture with a 21 -bit instruction word. Each register operand must be encoded in 6 bits, and each address operand in 10 bits. There are 3 kinds of instructions:

- 2 instructions take 3 register operands.
- 6 instructions take 1 register operand and 1 address operand.
- 256 instructions take 1 address operand.

QUESTION 3

A) Briefly explain how the concept of speculative execution is useful in improving performance.
B) Evaluate the following arithmetic expression into Decimal.

$$
\begin{equation*}
121_{16}+122_{10}-123_{8} \tag{5}
\end{equation*}
$$

C) Evaluate the following reverse polish expression, where each number is a (decimal) digit.

$$
\begin{equation*}
A B C D E^{*} F /+G-H /^{*}+ \tag{5}
\end{equation*}
$$

D) Convert into reverse polish notation the following infix expression (where operators have their usual/normal precedence) $(2 \times 3+4)-(4 / 2+1)$. Generate IJVM code to evaluate it. Show values in the Stack during the evaluation.
(See the IJVM instruction set on last page)

QUESTION 4

A) Give the IJVM code to evaluate the following expression to calculate the perimeter of a rectangle: $\mathrm{P}=2(\mathrm{~A}+\mathrm{B})$, where A and B are the dimensions (length and width). Assume A and B are assigned the values 3 and 8 respectively. Also use diagrams to show what will be happening on the stack.
B) What does the hypothetical machine instruction ADD [R2], [R3], R1 do?
C) What is the main purpose of the sequencer and the control store?
D) What is the data hazard/dependency in a pipelined system and how can its effects be overcome?
E) Describe the immediate, direct and indirect addressing modes.

QUESTION 5

A) Using Amdahl's law on a given program which has 50% sequential code and 50% parallel:
i. What is the speed up anticipated with two processors?
ii. What about 4 processors?
B) Four (4) CPU s are connected by a bus whose bandwidth is $r \mathrm{MB} / \mathrm{sec}$, by what percentage has the bandwidth changed if the system is scaled to 22 CPUs.
C) Suppose that for technical reasons it is only possible for a snooping cache to snoop on the address lines, not data lines. Would this change affect the write through protocol?

[^0]: THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

