UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

MAIN EXAMINATION, DECEMBER 2015

Title of Paper	:	Operating Systems
Course Number	:	CS 442
Time Allowed	:	Three (3) Hours
Instruction	:	Answer any FIVE questions

This exam paper should not be opened until permission has been granted by the invigilator.

1.			
	a)	Describe an operating system in terms of resource management and e machine.	extended [12]
	b)	How do real time systems differ from time sharing systems?	[8]
2.			
2.	a)	Define a deadlock. What are the necessary conditions for a deadlock?	[3+4]
	b)	Discuss the pros and cons of the Ostrich algorithm for deadlocks.	[10]
	c)	Differentiate a deadlock from a race condition.	[3]
3			
5.	a)	Define a process. Identify and explain all its transitions states.	[10]
	b)	Name and explain the components of process scheduling	[10]
4		<i>b</i> e	
	a)	Define the following terms: throughput, system call, critical sections	[6]
	b)	Given memory partitions of 500K, 200K, 300K, 600K (in this order), how each of the First-fit and Best-fit algorithms place processes of 212K, 417) and 426K (admitted in that order)?	w would K, 112K [8]
	c)	Which algorithm in b) makes the most efficient use of memory, why?	[6]
5			
5.	a)	Discuss the dining philosopher's problem and outline a solution to it.	[10]
	b)	How can semaphores and semaphores solution be implemented?	[10]
6.			
	a)	Compare and contrast a buddy system and a swapping system.	[8]
*	b)	Differentiate between a physical address and a virtual address.	[4]
	c)	A computer has 2 GB of RAM of which the operating system occupies 5121	MB. The

c) A computer has 2 GB of RAM of which the operating system occupies 512MB. The processes are all 128MB and have the same characteristics. If the goal is 99% CPU utilization, what is the maximum I/O wait that can be tolerated? [8]