UNIVERSITY OF SWAZILAND

Faculty of Science and Engineering

Department of Computer Science

MAIN EXAMINATION May 2017

Title of Paper: INTRODUCTION TO LOGIC

Course Number: CS235/ CSC201

Time Allowed: 3 hours

Total Marks: 100

Instructions to candidates:

This question paper consists of <u>FIVE (5)</u> questions. Answer any <u>FOUR (4)</u> questions. Marks are indicated in square brackets. All questions carry equal marks.

SPECIAL REQUIREMENTS:

NO CALCULATORS ALLOWED

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

Question 1

(a) With the help of examples, define the following terms as used in logic:

- (i) Proposition
- (ii) Argument
- (iii) Predicate
- (iv) Clause

[2 marks each]

- (b) Let p = "he is happily married," and q = "he is wealthy," and r = "he is smart." Write the following statements in symbolic form:
 - (i) He is happily married and wealthy but not smart.
 - (ii) He is not wealthy, but he is happily married and smart.
 - (iii) He is neither happily married, nor wealthy, nor smart. [2 marks each]
- (c) Using truth tables, show that $(A \lor B) \rightarrow C$ is equivalent to $(A \rightarrow C) \land (B \rightarrow C)$ [5]
- (d) From the truth table of (c) above, find the DNF and CNF of (A V B) \rightarrow C. [6]

Question 2

(a) Prove the equivalence elimination law using a truth table.		[4]
(b) Prove	the following using the laws of logical equivalence.	
(i)	$(P \land \neg Q) \lor R \equiv \neg (\neg P \land R) \land (Q \rightarrow R)$	[5]
(ii)	$(A \longleftrightarrow B) \equiv \neg (A \land \neg B) \land (\neg B \lor A)$	[5]
(c) Given	$(\neg p \lor q) \Rightarrow (r \lor \neg q)$, rewrite the proposition using only \neg and Λ .	[6]
(d) Prove (B $\rightarrow \neg$ A) \land (\neg B $\rightarrow \neg$ A) $\rightarrow \neg$ A using inference rules.		[5]

, · ·

Question 3

(a)	State one advantage of the Quine-McClauskey method over the Karnaugh map method.	[2]
(b)	Minimize the function, $f(a, b, c, d)$, using Karnaugh map method. $f(a, b, c, d) = acd + a\overline{b} \cdot \overline{c}d + \overline{a} \cdot \overline{b}cd + \overline{a}bc\overline{d}$	[6]
(c)	Use NAND gates ONLY to draw the circuit that implements the minimized expression or above.	f (b) [6]
(d)	Using the Quine-McClauskey method, minimize the following functions. (i) $f(A, B, C) = \overline{ABC} + \overline{ABC} + AB\overline{C} + ABC$ (ii) $f(A, B, C, D) = ABCD + A\overline{B}CD + AB\overline{C}D + ABC\overline{D} + A\overline{B}C\overline{D} + \overline{A}BCD + \overline{A}B\overline{C}D$	[4] [7]
Qu	estion 4	
(a)	What is the difference between;	
	(i) Combinational and sequential circuits.	
	(ii) Synchronous and asynchronous circuits [2 marks e	ach]
(b)	With the aid of a well labelled diagram, describe the operation of the D latch.	[6]
(c)	Find the 2's compliment representation of-21.	[3]

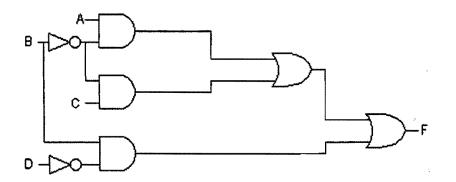
- (d) Explain why the 2's complement arithmetic is commonly used as compared to other methods. [3]
- (e) The state of a CPU register's contents is 100111.10101. What are its contents if it represents a positive real number? Show all your working.
 [5]

--

(f) Explain clearly the difference between a half and full adder.

Page 3 of 4

[5]


Question 5

(a) Define suitable predicates and then express the following statement as a logical expression: All the boys failed the mathematics test.

[4]

[6]

- (b) Convert the following into SOP form and minimize using the Karnaugh map method. [6] $F = (AB + C) (B + \overline{C} D)$
- (c) Write down and simplify the logic function represented by the circuit diagram below: [4]

- (d) With the aid of a well labelled diagram, describe the operation of a half adder. [5]
- (e) Determine whether the following are tautologies, contradictory or contingent:
 - (i) $(p \land q) \land (\neg p \lor \neg q)$
 - (ii) $(p \land \neg q) \lor \neg p \lor q$