UNIVERSITY OF SWAZILAND

Faculty of Science Department of Computer Science MAIN EXAMINATION December 2016

Title of Paper: COMPUTER ORGANISATION II

Course Number: CS341

Time Allowed: 3 hours

Total Marks: 100

Instructions to candidates:

This question paper consists of **<u>FIVE (5)</u>** questions.

ANSWER ONE QUESTION FROM SECTION A ANSWER THREE QUESTIONS FROM SECTION B

All questions carry equal marks.

SPECIAL REQUIREMENTS:

NO CALCULATORS ALLOWED

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

SECTION A

QUESTION 1 (COMPULSORY)

A)	Describe what is meant by Instruction Set Architecture (ISA). In addition briefly describe any 3 sections you would expect to see in an ISA specification document.	[5]
B)	An instruction set has 4 bits for <i>opcode</i> and 32 bits for addresses. What percentage change in instructions and memory resolution results if the <i>opcode</i> is increased by 2 b without altering the instruction length (by taking bits from address portion).	oits [4]
C)	Explain one advantage and one disadvantage of the ASCII system compared with Unicode.	[2]
D)	Discuss the advantages and disadvantages of minimizing the length of an instruction format.	[3]
E)	With the aid of suitable diagrams compare the following: i) Cache miss and page fault ii) Conditional and unconditional branching	[8]

F) One of your friends has just come bursting into your room at 3 A.M., out of breath, to tell you about his brilliant new idea: an instruction with two opcodes. Should you send your friend off to the patent office or back to the drawing board? [3]

SECTION B (ANSWER ANY THREE QUESTIONS FROM THIS SECTION)

QUESTION 2

A) V 2 a	Vhat is the main purpose of the control store? Communication with memory can be done i different ways. State and briefly describe the 2 ways in which memory access can be chieved.	n [7]
B) V	Vith the aid of appropriate diagrams, describe the following allocation algorithms:	
	i) First fit ii) Worst fit	[6]
C)	Design an expanding opcode to allow all the following to be encoded in a 36-bit instruction:	
	 7 instructions with two 15-bit addresses and one 3-bit register number 500 instructions with one 15-bit address and one 3-bit register number 40 instructions with no addresses or registers. 	[8]
D)	Is it possible to design an expanding opcode to allow the following to be encoded in a 12-bit instruction? A register is 3 bits.	1
	 4 instructions with three registers 255 instructions with one register 16 instructions with zero registers 	[4]
<u>QU</u>	ESTION 3	
A)	Define any 6 addressing modes.	[6]
B)	What is the difference between an instruction and a pseudoinstruction?	[2]
C)	A machine has a 32-bit byte-addressable virtual address space. The page size is 4 KE How many pages of virtual address space exist?	[3]
D)	Briefly explain how the concept of speculative execution is useful in improving performance.	[4]
E)	Evaluate the following reverse polish expression, where each number is a (decimal) digit. $(A-B) \times (((C-D \times E) / F) / G) \times H$	[5]

F) Compare internal fragmentation to external fragmentation. What can be done to alleviate each? [5]

QUESTION 4

A) Using correct terminology and illustrations, in short paragraphs, describe the following terms:

i) Segmentation. [5] ii) Paging. [5] iii) Paged segmentation. [3]

- B) Explain, using a suitable illustration, how semaphores work. [4]
- C) Outline the main steps carried out by a two-pass assembler? [8]

QUESTION 5

A) Using Amdahl's law on a given program which has 50% sequential code and 50% parallel:

i. What is the speed up anticipated with two processors?	[5]
ii. What about 4 processors?	[4]
iii. How many processors would result in a 4-fold speedup?	[4]

B) For a certain program, 2% of the code accounts for 50% of the execution time. Compare the following three strategies with respect to programming time and execution time. Assume that it would take 100 man-months to write it in C, and that assembly code is 10 times slower to write and four times more efficient.

i.	Entire program in C.	[4]
ii.	Entire program in assembler.	[4]
iii.	First all in C, then the key 2% rewritten in assembler.	[3]

<< End of Question Paper >>