University of Swaziland

Department of Computer Science

Supplementary Examination

JULY 2017

Title of paper	: Data Structures
Course number	: CS342
Time Allowed	: Three (3) hours
Instructions	: Each question carries 25 marks
	- Answer any four (4) questions from questions 1 to 6.

This paper may not be opened until permission has been granted by the invigilator

Question 1

(a) With the aid of examples, explain the meaning of the following terms.

(i) Abstraction	2 marks
(ii) Record Mapping Function	2 marks
(iii) Generic class	2 marks
(iv) Height of a node in a tree	2 marks
(v) Recursive algorithm.	2 marks
(vi)Big-oh time complexity of algorithms	2 marks

(b) State whether the following statements are true or false. If false, explain your answer.
(i) The depth of the root node in a tree equals the height of the tree. 1 mark
(ii) an array requires contiguous memory allocation. 1 mark
(iii)A tree is a graph.
(iv) $\mathrm{An} \mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm is faster than an $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm. I mark
(v) An array implementation of a list requires the same amount of space as a pointer-based implementation.

1 mark
(c) Write the pseudocode for merge-sort algorithm, clearly stating the preconditions and post-conditions. With the aid of a sample array containing not less than 6 values, trace the execution of the algorithm. What is the running time of this algorithm?

8 marks

Question 2

Assuming an array based implementation of a list,
(a) Using C\#IJava notation, define a generic class for an ordered List. 5 marks
(b) Write C++ functions that implement the constructor, IsEmpty, Insert and Delete operations on the structure described in (a) above.

12 marks
(c) Using the big-O notation, estimate the running times of the implementations given in (b) above.

4 marks
(d) Write a recursive function that prints all the elements in a List.

4 marks

Question 3

(a) Compute the approximate amount of memory required to store N integer values in an array and in linked List. What can be concluded from this approximation about the relative memory usage in array and linked lists.
(b) With the aid of an example, explain the difference between row-major and column-major allocation of a 2 -dim array. Which allocation would you say is better in terms of the amount of memory used?

5 marks
(c) What is the running time of the operation that accesses an element at a specific index position in an array. (e.g. X[i]) . Explain your answer.

4 marks
(d) What is an array-mapping function? Assuming row-major order, show the array mapping function for a 2-D array. Show all workings.

3 marks
(e) Using C\#/Java notation, write a recursive function that takes an array of characters (a string) and determines if the array of characters (string) contains a palindrome.
A palindrome is a word, phrase, number, or other sequence of symbols or elements, whose meaning may be interpreted the same way in either forward or reverse direction.

Question 4

(a) List and describe the operations of a queue data structure.

6 marks
(b) With the aid of a diagram, compare a Simple linked-list and Circular linked-list implementation of a queue in terms of the memory requirements and the running times of the operations. In your opinion which one is a better implementation? Explain your answer.
(c) Using C\# Standard Template Library [or Java Collection] classes, write an algorithm that takes two queues of integer numbers [each sorted in ascending order] and constructs and returns a new queue [also sorted in ascending order] consisting of all members of the given queues. For example, if first queue is $[1,3$, 3] with 1 in front and second queue is $[-3,-2,0,4]$ with -3 in front, the new queue should be $[-3,-2,0,1,1,3,3,4]$ with -3 in front. 12 marks

Question 5

(a) What is 2-3 tree?

2 marks
(b) Draw a diagram of 2-3 search tree of height 3 . How many leaf nodes are in this tree?
(c) List and describe the operations of a stack data structure.
(d) Write the pseudocode for an algorithm that uses a stack to evaluate post-fix expressions of the following form:

$$
72042-\text { * }+
$$

Trace the execution of the algorithm on this example.
8 marks
(e) Using C\#/Java standard template library (STL)/Collection, write a program that implements the pseudocode obtained in (d) above.

Question 6

Consider the following graph

(a) Show the adjacency matrix representation of the above graph G .

2 marks
(b) Show the adjacency list representation of the above graph G. 3 marks
(c) Using C\# or Java notation, define a suitable structure that can be used to represent a graph using an adjacency list.
(d) List all the nodes of G, assuming Breadth-First Search (BFS) starting from node D. You may assume adjacent nodes are visited in alphabetical order.
(e) Trace the execution of the Depth-First Search (DFS) algorithm on the above graph G starting from node D . Assume adjacent nodes are visited in alphabetic order.

