University of Swaziland Department Of Computer Science Main Examination May 2017

Title of paper	: Programming Languages
Course number	: CS343
Time Allowed	: Three (3) hours
Instructions:	

- Answer ALL Questions in section A.
- Answer any three (3) questions in section B.

This paper may not be opened until permission has been granted by the invigilator.

Section A

QUESTION 1 [25 marks]

i. Explain the following terms:
a) Semantic Gap
b) Arity and Fixity
c) Inclusion Polymorphism
d) Procedural Paradigm
e) Lazy Evaluation
ii. Discuss the differences between the following:
a. Axiomatic Semantics and Denotational Semantics
b. Untyped and Typed Languages
c. Imperative and Declarative Paradigms
d. Compiler and Interpreter
e. Inclusion Polymorphism and Parametric Polymorphism

Section B

QUESTION 2 [25 marks]

i. State any 3 reasons why we study concepts of programming languages
ii. Discuss (in detail) low level (LL) programming, stating the main reasons why it mostly avoided.
iii. Most languages have about seven (7) ways of defining new types, name and describe any five of these ways giving a fragment of code as an example.

QUESTION 3 [25 marks]

i. Name the areas in which Prolog programming language is used?
ii. Briefly describe the following terms, as they are understood by a PROLOG programmer:
a) Fact
b) Rule
c) Query
d) Unification
e) Backtracking
iii. What answers do you get for below queries for given prolog program?

Program :

vegetarian(jose).
vegetarian(james).
vegetable(carrot).
vegetable(egg_plant).
likes(jose, X) :- vegetable(X).
loves(Who, egg_plant) :- vegetarian(Who).

Queries:

1?-vegetable(X).
2 ?- vegetable(potato).
3?- vegetarian $($.
4 ?- likes(jose, What).
5 ?- likes(Who, egg_plant).
6 ?- loves(Who, egg_plant).

QUESTION 4 [25 marks]

i. State and discuss the two (2) main characteristics of functional programming.
ii. Describe in detail the structure of lambda calculus expressions, as well as the method by which the expressions are evaluated (reduced to normal form).
iii. Following proper grammatical rules, show the following lambda expressions are reduced to its normal form:
a) $\left(\lambda x \cdot\left(\left(\lambda y \cdot x^{*} y+3\right)((\lambda z . z+7) 2)\right) 4\right)$
b) $\left(\left(\left(\left(\lambda x .\left(\lambda y .\left(z . x^{*} y^{*} z\right)\right)\right) 5\right) 8\right) 1\right)$

QUESTION 5 [25 marks]

i. State any 2 advantages of formal descriptions of semantics
ii. Write a Haskell script that can be used to evaluate the expression:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

iii. Write simple Haskell expressions to perform following tasks:
a) Return the list $[20,45,26,79,24,33]$ without the first element.
b) Show the integer value from 1 to 500 which is even.
c) Show the ascending sorted list [$23,89,1,7,36,46,97,100]$
d) Return the largest value in the list [$55,66,2,34,78,99,46]$
iii. What is the output of the following Haskell code :
a) fst ((1, "fool"),"food")
b) $\operatorname{snd}((1$, "fool"),"food")
c) $\left[\left[x^{*} y|y \leftarrow[1 . .10]| x \leftarrow[1.4]\right]\right.$
d) zipWith (+) $[2,4,3,1][5,2,4,9]$
e) foldr (${ }^{*}$) $1[2,4,5,3]$

End of Question Paper

