University of Swaziland
 Department of Computer Science
 CS211 / CSC211 - Theory of Computation
 Final Examination
 DECEMBER 2016

Instructions

1. Read all the questions in Section A and Section B before you start answering any question.
2. Answer all questions in Section A. Answer any two questions of Section B. Maximum mark is 100 .
3. Use correct notation and show all your work on the answer script.

Section A

Question $1[6+6+12]$

The following languages are given on symbol set $\{a, b\}$. Assume that $u, v, w \in$ $\{a, b\}^{*}$.

1. $L_{1}=\{u w v,|u|=2$ and $|v|=2\}$
2. $L_{2}=\{a w a\} \cup\{b w b\}$
3. $L_{3}=\{w,(|w| \bmod 3=0)\}$

The following set of words is given -
$\{\lambda, a, b, a b, a a b, a b a a, ~ a a a b b, ~ b b b b b a b, a a a b b b b$, aaaabb, aabbbbabb, ababab\}
a From the above set write all words belonging to L_{1}, L_{2} and L_{3}, respectively.
b Write the regular expressions representing L_{1}, L_{2} and L_{3} respectively.
c Design three deterministic finite acceptors (dfa's) accepting $L_{1,} L_{2}$ and L_{3}, respectively.

Question $2[6+8+12]$
You are given the following grammar $G=(\{S, A, B\},\{a, b\}, S, P)$ and P is given by;
$S \rightarrow a b A$,
$A \rightarrow b a B$,
$B \rightarrow a A \mid b b$
a Does the grammar accept or reject the following words?
i $a b b a b b$
ii $a b a b b b b$
iii $a b b a a b a b b$
b Construct an NFA that accepts the language generated by the grammar above.
c Convert the NFA into a DFA.

Section B

Question 3 [25]

a. $[6+6+1]$ Given a context free grammar, $G=(\{S\},\{a, b\}, S, P)$ where the set of productions P is given as

$$
\{S \rightarrow a S|a S b S| \lambda\}
$$

Write leftmost derivations for $w_{1}=a a a b$ and $w_{2}=a b a b$. Taking examples of both w_{1} and w_{2}, show that G is ambiguous by drawing two distinct parse trees for w_{1} and w_{2}. What is the complexity of G.
$b[4+4+4]$ Given the context free grammar, as ordered below, remove the following
$S \rightarrow a S|A| C \mid D$
$A \rightarrow a A \mid \lambda$
$B \rightarrow a a \mid \lambda$
$C \rightarrow a C b$
$D \rightarrow b D \mid b$
i λ productions.
ii unit productions.
iii useless productions.

Question 4 [25]

a $[10+5]$ Design a deterministic pushdown automaton (dpda) to recognize the language-

$$
L=\left\{w \in\{a, b\}^{*}, n_{a}(w) ? n_{b}(w), w \text { always starts with an } a\right\}
$$

Describe the functional steps of your dpda. Write instantaneous descriptions for $w=a a b b a$
b $[6+4]$ Design a non deterministic pushdown automaton (npda) to recognize the language generated by the grammar in Griebach Normal Form-

$$
G=(\{S, A, B\},\{a, b\}, S, P)
$$

where the set of productions P is -
\{
$S \rightarrow a A B B \mid a A A$
$A \rightarrow a B B \mid a$
$S \rightarrow b B B|a B B| a$
\}
Write instantaneous descriptions of your npda for $w=a a a b a a$.

Question $5[15+5+5]$
Write the functional steps of the design of a Turing Machine to compute:

$$
F(x)=x \operatorname{div} 3
$$

Assume x to be a non zero positive integer in unary representation. Also write the design and instantaneous descriptions using the values of x as 1111 and 111111 (in unary representation) for your Turing Machine.

