UNIVERSITY OF SWAZILAND DEPARTMENT OF COMPUTER SCIENCE CS211 / CSC211 — THEORY OF COMPUTATION FINAL EXAMINATION December 2016

Instructions

- 1. Read all the questions in Section A and Section B before you start answering any question.
- Answer all questions in Section A. Answer any two questions of Section B. Maximum mark is 100.
- 3. Use correct notation and show all your work on the answer script.

Section A

Question 1 [6 + 6 + 12]

The following languages are given on symbol set $\{a, b\}$. Assume that $u, v, w \in \{a, b\}^*$.

- 1. $L_1 = \{uwv, |u| = 2 \text{ and } |v| = 2\}$
- 2. $L_2 = \{awa\} \cup \{bwb\}$
- 3. $L_3 = \{w, (|w| \mod 3 = 0)\}$

The following set of words is given -

 $\{\lambda, a, b, ab, aab, abaa, aaabb, bbbbbab, aaabbbb, aaaaabb, aabbbbabb, ababab\}$

- a From the above set write all words belonging to L_1, L_2 and L_3 , respectively.
- b Write the regular expressions representing L_1, L_2 and L_3 respectively.
- c Design three deterministic finite acceptors (dfa's) accepting L_1, L_2 and L_3 , respectively.

Question 2 [6 + 8 + 12]

You are given the following grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ and P is given by;

 $S \rightarrow abA, \\ A \rightarrow baB, \\ B \rightarrow aA|bb$

- a Does the grammar accept or reject the following words?
 - i abbabb
 - ii ababbbb
 - iii abbaababb
- b Construct an NFA that accepts the language generated by the grammar above.
- c Convert the NFA into a DFA.

Section B

Question 3 [25]

a [6 + 6 + 1]Given a context free grammar, $G = (\{S\}, \{a, b\}, S, P)$ where the set of productions P is given as

$$\{S \rightarrow aS | aSbS | \lambda\}$$

Write leftmost derivations for $w_1 = aaab$ and $w_2 = abab$. Taking examples of both w_1 and w_2 , show that G is ambiguous by drawing two distinct parse trees for w_1 and w_2 . What is the complexity of G.

b [4 + 4 + 4] Given the context free grammar, as ordered below, remove the following

$$\begin{split} S &\to aS|A|C|D\\ A &\to aA|\lambda\\ B &\to aa|\lambda\\ C &\to aCb\\ D &\to bD|b \end{split}$$

i λ productions.

ii unit productions.

iii useless productions.

Question 4 [25]

a [10 + 5] Design a deterministic pushdown automaton (dpda) to recognize the language—

 $L = \{w \in \{a, b\}^*, n_a(w) ? n_b(w), w \text{ always starts with an } a\}$

Describe the functional steps of your dpda. Write instantaneous descriptions for w = aabba

b [6 + 4] Design a non deterministic pushdown automaton (npda) to recognize the language generated by the grammar in Griebach Normal Form—

$$G = (\{S, A, B\}, \{a, b\}, S, P)$$

where the set of productions P is --

 $\begin{cases} S \rightarrow aABB | aAA \\ A \rightarrow aBB | a \\ S \rightarrow bBB | aBB | a \\ \end{cases}$

Write instantaneous descriptions of your npda for w = aaabaa.

Question 5 [15 + 5 + 5]

~

Write the functional steps of the design of a Turing Machine to compute:

$F(x) = x \operatorname{div} 3$

Assume x to be a non zero positive integer in unary representation. Also write the design and instantaneous descriptions using the values of x as 1111 and 1111111 (in unary representation) for your Turing Machine.