University of Swaziland

Department of Computer Science
CS211 / CSC211 - Theory of Computation
Re-sit Examination

JuLy 2018

Instructions

1. The time allowed is THREE (3) HOURS
2. Read all the questions in Section A and Section B before you start answering any question.
3. Answer all questions in Section A. Answer any two questions of Section B. Maximum mark is 100.
4. Use correct notation and show all your work on the answer script.

Section A

Answer all two questions in this section.

Question 1 [25]

The following languages are given on symbol set $\{0,1\}$. Assume that $u, v, w \in$ $\{0,1\}^{*}$.
i $L_{1}=\{u w v:|u|=2$ and $|v|=1\}$
ii $L_{2}=\{0 w 0\} \cup\{1 w 1\}$
iii $L_{3}=\{w:|w| \bmod 4=0\}$
The following set of words is given $\{\lambda, 0,1,01,001,0100,00011,1111101,0001111,00000011,001111011,010101\}$
a [6] From the above set, write all words belonging to L_{1}, all words belonging to L_{2} and all words belonging to L_{3}.
b [6] Write regular expressions representing L_{1}, L_{2} and L_{3}.
c [12] Design three deterministic finite acceptors accepting L_{1}, L_{2} and L_{3} respectively.

Question 2 [25]

The following non-deterministic finite accaptor is given:

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1\}, q_{0}, \delta,\left\{q_{1}, q_{2}\right\}\right)
$$

where the transitions are gien as:

$$
\begin{aligned}
& \delta\left(q_{0}, 0\right)=\left\{q_{0}, q_{1}\right\} ; \\
& \delta\left(q_{1}, 1\right)=\left\{q_{0}, q_{2}\right\} ; \\
& \delta\left(q_{2}, 1\right)=\left\{q_{1}, q_{2}\right\} ;
\end{aligned}
$$

a [6] Draw the transition digraph of the above M.
b [6] Trace computations of all the words of L, where $L=\{111,000$, and 010 $\}$
c [14] Find the equivalent DFA of M and write the state transition tale of your DFA.

Section B

Answer any two questions in this section.

Question 3 [25]

a A context free grammar, $G=(\{S\},\{a, b\}, S,\{S \rightarrow a S|a S b S| \lambda\})$.
Using G, write leftmost derivations for $w_{1}=a a a a b$ and $w_{2}=a b a b$. Taking examples of both w_{1} and u_{2}, show that G is ambiguous by drawing two distinct parse trees for each w_{1} and w_{2}. What is the complexity of G ?
b $[9+6]$ Assuming n, m and $k \geq 0$. Find Context Free Grammars G_{1} and G_{2} that generate the following languages.
i $L\left(G_{1}\right)=\left\{a^{2 n} b^{i} c^{2 m}: i=m+n\right\}$
ii $L\left(G_{1}\right)=\left\{a^{n} b^{m i} c^{2 k}: m=k\right\}$
Write leftmost derivations for $w_{1}=a a b, w_{2}=b c c, w_{3}=a a b b c c$ using G_{1} and $w_{4}=b l c c, w_{5}=a a b b c c, w_{6}=$ aabc using G_{2}.
Include production number at each step of your derivation.

Question 4 [25]

a $[10+5]$ Design a deterministic pushdown automaton (dpda) to recognize the language-

$$
L=\left\{a^{n} b^{m}: n>0\right\}, m>n
$$

Describe the functional steps of your dpda. Write instantaneous descriptions for $w_{1}=a a b b b b$ and $w_{2}=a a a b b b b$.
$\mathrm{b}[6+4]$ Design a non deterministic pushdown automaton (npda) to reeognize the language generated by the grammar -

$$
G=(\{S, A, B, C\},\{a, b, c\}, S, P)
$$

where the set of productions P is $-\{$

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow b B|a A B C| a \\
& B \rightarrow b B \mid b \\
& C \rightarrow c C \mid c \\
&\}
\end{aligned}
$$

Write instantaneous descriptions of your npda for $w=a a a b c$.

Question $5[15+5+5]$
Write the design of a Turing Machine (TM) to compute:

$$
F(x)=x \operatorname{div} 2
$$

Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the values of x as 11 and 1111 (in unary representation) for your Tluring Machine.

