UNIVERSITY OF SWAZILAND

DEPARTMENT OF COMPUTER SCIENCE

CSC203 — Descrete Mathematics

FINAL EXAMINATION

December 2018

Instructions

- 1. The time allowed is **THREE (3) HOURS**.
- 2. Read all the questions before you start answering any question.
- 3. There are six (6) quotions. Answer any four(4) questions. Each question has 25 marks. Maximum mark is 100.
- 4. Use correct notation and show all your work on the answer script.

DO NOT OPEN THIS PAPER UNTIL YOU ARE INSTRUCTED TO DO SO BY THE INVIGILATOR

Answer any four (4) questions.

Question 1 [25]

- a [4] With the aid of suitable examples, define the following terms used in logic:
 - a Clause
 - b Predicate
- b [3] Given the conditional statement, "For Sipho to get a good job, it is sufficient for him to learn discrete mathematics", write down the statements for contrapositive, inverse and converse.
- c [3] Evaluate this expression $1100 \land (01011 \lor 11011)$.
- d [4] What is the value of x after the statement

if
$$(x + 1 = 3)$$
 OR $(2x + 2 = 3)$ then $x := x + 1$

encountered in a computer program, if x = 1 before the statement is reached?

- e [5] Use truth tables to show that $(p \lor q) \to r$ is equivalent to $(p \to r) \land (q \to r)$.
- f [4] Show that $(p \land q) \rightarrow r$ is a tautology.
- g [2] Let P(x) be the statement "x spends more than five hours every weekday in class," where the domain for x consists of all students. Express each of these quantifications in English.
 - a $\exists x P(x)$ b $\forall x P(x)$

Question 2 [25]

- a [5] Draw a Venn diagram for the following sets of numbers: $\mathbb{C}, \mathbb{Z}, \mathbb{Q}, \mathbb{N}, \mathbb{R}$
- b [2] Differentiate between an open interval and a closed interval.
- c [3] Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.
 - i Is A a subset of B?
 - ii What is $A \times B$
 - iii What is the power set of B?
- d [6] Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- e [2] Why is f(x) = 1/x not a function from \mathbb{R} to \mathbb{R} ?

- f [4] With the aid of suitable examples, differentiate between a total function and a partial function.
- g [3] Find these terms of the sequence an $\{a_n\}$ where $a_n = 2^n + 1$
 - i *a*0
 - ii a_4

Question 3 [25]

- a [5] List five (5) characteristics of an algorithm.
- b [4 + 4 + 1] Consider an algorithm for finding the smallest integer in a list of n integers.
 - i Describe the algorithm using English.
 - ii Express this algorithm in pseudocode
 - iii How many comparisons does the algorithm use?
- c [4] Explain the halting problem.
- d [4] What is the order O(f(x)) of the following functions
 - i f(x) = 17x + 11ii $f(x) = 2^x$ iii $f(x) = (x^2 + 1)/(x + 1)$
- e [3] Show that $(n \log n + n^2)^3$ is $O(n^6)$.

Question 4 [25]

- a [4] Does 17 divide each of these numbers?
 - i 68 ii 357
- b [6] Suppose that a and b are integers, $a \equiv 4 \pmod{13}$, and $b \equiv 9 \pmod{13}$. Find the integer c with $0 \le c \le 12$ such that
 - i $c \equiv 9a \pmod{13}$
 - ii $c \equiv a + b \pmod{13}$
 - iii [8] Find the octal and hexadecimal expansions of $(11111010111100)_2$ and the binary expansions of $(765)_8$ and $(A8D)_{16}$.
 - iv [4] What is the greatest common divisor of 17 and 22?
 - v [4] Find the prime factorization of 126 and 111.

Question 5 [25]

- a [6] Explain the basic components of (i) mathematical induction and (ii) recursion.
- b [8] Use mathematical induction to show that

i $1+2+2^2+\ldots+2^n=2^{n+1}-1$ ii $1^2+3^2+5^2+\ldots+(2n+1)^2=(n+1)(2n+1)(2n+3)/3$

for all positive integers n.

- c [8] Write down pseudocode that calculate the factorial of an integer n, that is n!, using (i) a recursion and (ii) iteration.
- d [3] Given $f(n+1) = 2^{f(n)}$. Find f(3), if f(n) is defined recursively by f(0) = 1 and for n = 0, 1, 2, ...

Question 6 [25]

- a [4] Briefly, explain the two basic counting principles.
- b [6] There are 18 mathematics majors and 325 computer science majors at a college.
 - i In how many ways can two representatives be picked so that one is a mathematics major and the other is a computer science major?
 - ii In how many ways can one representative be picked who is either a mathematics major or a computer science major?
- c [4] Show that if there are 30 students in a class, then at least two have last names that begin with the same letter.
- d [3] How many different permutations are there of the set $\{a, b, c, d, e, f, g\}$?
- e [6] A coin is flipped eight times where each flip comes up either heads or tails. How many possible outcomes
 - i are there in total?
 - ii contain exactly three heads?
 - iii contain the same number of heads and tails?
- f [3] Find the expansion of $(x+y)^6$.