University of Swaziland
 Department of Computer Science
 CS211 / CSC211 - Theory of Computation
 Final Examination

December 2018

Instructions

1. The time allowed is THREE (3) HOURS.
2. Read all the questions in Section \mathbf{A} and Section \mathbf{B} before you start answering any question.
3. Answer all questions in Section A. Answer any two questions of Section B. Maximum mark is 100 .
4. Use correct notation and show all your work on the answer script.

Section A

Answer all two questions in this section.

Question 1 [25]

a [3] Let A be the set $\{x, y, z\}$ and B be the set $\{x, y\}$.
i Is A a subset of B ?
ii What is $A \times B$
iii What is the power set of B ?
b [4] Define a grammar for the set of integer numbers in $\mathrm{C}++$.
c [2] With an aid of a suitable example, explain the role of a trap state in a DFA.
d $[8+8]$ Find (i) the grammars and (ii) the DFAs for the following languages on $\Sigma=\{a, b\}$.

I $L=\{w:|w| \bmod 3=2\}$
II $L=\left\{a^{n} b^{m}: m+n\right.$ is odd $\}$

Question 2 [25]

a You are given the following grammar $G=(\{S, A, B\},\{a, b\}, S, P)$ and P is given by;
$S \rightarrow a b A$,
$A \rightarrow b a B$,
$B \rightarrow a A \mid b b$
i [7] Construct an NFA that accepts the language generated by the grammar above.
ii [8] Convert the NFA into a DFA.
b [10] Design a finite state automaton that simulates the operations of a microwave oven.

The following states of the microwave oven may be included.

- ON - when the oven is on, lights are on and every key is ready for engagement
- OFF - when the oven is off, electric circuit is switched off.
- IDLE - when the oven is in a state of readyness to microwave heat
- HEAT - when the oven is microwave heating

A finite state automaton has actions which allows them to transit from stare to state, for example a DFA/NFA has a 'read "a" ' action.
The following actions may be included in your finite state machine for a microwave oven.

- Press 'On' - to press a key 'On' to power on the microwave oven
- Press 'Off' - to press a key 'Off' to power off the microwave oven
- Prepare settings - this action is a set (or combination) of actions for preparation ot microwave for example setting the cooking timer and placing the food into the oven
- Stop settings - invoked when the microwave oven is done cooking, for example cooking timer is 0 .
- Press "Start" - to press a key 'Start' to instantiate a heating session of a microwave oven
- Press "Stop" - to press a key 'Stop' to terminate a heating session of a microwave oven
- Press "Pause" - to press a key 'Pause' to temporalily halt a heating session of a microwave oven, which may be resumed later
- Open door - an action for physically opening the door of the microwave oven
- Close door - an action for physically closing the door of the microwave oven

NOTE: You must specify (and explain) additional assumptions that you have added into your design of a finite state automaton for a microwave oven. For example, clearly stating your your choosen initial state and final states.

Section B

Answer any two questions in this section.

Question 3 [25]

a [6] The operation $\operatorname{tail}(L)$ is defined as

$$
\operatorname{tail}(L)=\left\{y: x y \in L \text { and } x, y \in \Sigma^{*}\right\}
$$

Show that the family of regular languages is closed under this operation.
b [6] Show that the language, $L=\left\{a^{n} b^{n} c^{n}\right\}$, is not regular.
$c[4+4+4]$ Given the context free grammar, as ordered below, remove the following productions listed in (i)-(iii).
$S \rightarrow a A \mid a B B$
$A \rightarrow a a A \mid \lambda$
$B \rightarrow b B \mid b b C$
$C \rightarrow B$
i λ productions.
ii unit productions.
iii useless productions.

Question 4 [25]

a $[10+5]$ Design a deterministic pushdown automaton (dpda) to recognize the language-

$$
L=\left\{w \in a^{n} b^{m}, n>m\right\}
$$

Describe the functional steps of your dpda. Write instantaneous descriptions for $w_{1}=a a a b b$ and $w_{2}=a a a b b b$.
$\mathrm{b}[6+4]$ Design a non deterministic pushdown automaton (npda) to recognize the language generated by the grammar in Griebach Normal Form

$$
G=(\{S, Z, B\},\{a, b\}, S, P)
$$

where the set of productions P is -

$$
\begin{aligned}
& \{ \\
& S \rightarrow a B Z|a B| a Z \mid a \\
& B \rightarrow b B \mid b \\
& Z \rightarrow a B Z|a Z| a B \mid a \\
& \}
\end{aligned}
$$

Write instantaneous descriptions of your npda for $w=a a a b$.

Question $5[15+5+5]$

Write the design of a Turing Machine to compute:

$$
F(x)=3 x+2
$$

Assume x to be a non zero positive integer in unary representation. Clearly write the functional steps of your TM computations. Also write the instantaneous descriptions using the values of x as 11 and 1111 (in unary representation) for your Turing Machine.

