UNIVERSITY OF SWAZILAND **FACULTY OF SCIENCE** DEPARTMENT OF ELECTRONIC ENGINEERING

SUPPLEMENTARY EXAMINATION 2006/2007

TITLE OF PAPER:

SIGNALS I

COURSE NUMBER:

E342

TIME ALLOWED : THREE (3) HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS

EACH QUESTION CARRIES 25 MARKS

MARKS FOR DIFFERENT SECTIONS ARE SHOWN

IN THE RIGHT-HAND MARGIN

THIS PAPER HAS 6 PAGES, INCLUDING THIS PAGE

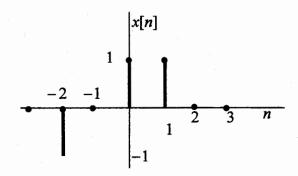
DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

QUESTION ONE

- (a) With the help of appropriate sketches, differentiate between *periodic* and *non-periodic* signals (6 marks)
- (b) Consider $x[n] = (-1)^n$ for all integer values of n. Show that $\cos(\pi t)$ and $\cos(3\pi t)$ are envelopes of x[n] if they are each sampled with sampling period T=1. What can be said about $\cos(\pi t)$ and $\cos(3\pi t)$?

(6 marks)

(c) Let x[n] represent the following signal



(i) Sketch y[n] = x[n-1]

(2 marks)

- (ii) Assuming that x[n] can be written as the sum of an even part $(x_e[n] = x_e[-n])$ and an odd part $(x_o[n] = -x_o[-n])$, prove that $x_o[n]$ is uniquely determined by x[n] (5 marks)
- (iii) Sketch $x_o[n]$

(4 marks)

(d) Evaluate $\int_{-\infty}^{\infty} y_1(t)y_2(t)$ given that

$$y_1(t) = 2\sin(2000\pi t)$$

 $y_2(t) = \partial(t - 0.25 \times 10^{-3})$

(2 marks)

QUESTION TWO

- (a) State the Nyquist sampling theorem. What happens when a signal is undersampled? (4 marks)
- (b) Determine if the following signals are periodic. If periodic, determine the fundamental period

(i) $x(t) = 4\cos(5\pi t)$

(3 marks)

(ii)
$$x[n] = 2\sin(3n)$$

(3 marks)

(iii)
$$x(t) = 2\cos(10t+1) - \sin(4t-1)$$

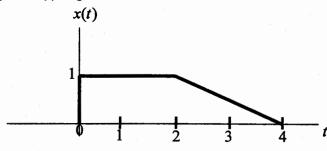
(3 marks)

(c) Simplify the following expression. Give your answer both in polar and in rectangular form

$$3e^{\frac{j\pi}{4}} + 4e^{\frac{-j\pi}{2}}$$

(3 marks)

(d) The signal x(t) is given below



Transform it to x(-2t+6)

(5 marks)

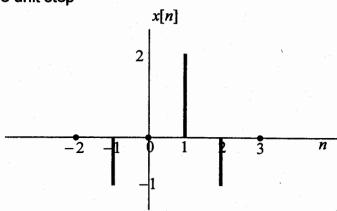
(e) Express the following signal x[n] solely in terms of shifted scaled superposition of

(i) the unit impulse

(2 marks)

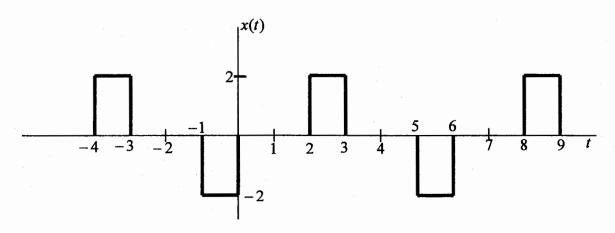
(ii) the unit step

(2 marks)



QUESTION THREE

(a) For the following periodic signal:



(i) Find the Fourier series

(10 marks)

(ii) Plot the frequency spectra

(8 marks)

(b) Sketch the following signals

(i)
$$x(t) = -2 \prod (4t + 3)$$

(3 marks)

(ii)
$$x[n+1]$$
 given than $x[n] = \begin{cases} 0 & \text{if } n < 2 \\ 2n-4 & \text{if } 2 \le n < 4 \\ 4-n & \text{if } 4 \le n \end{cases}$ (4 marks)

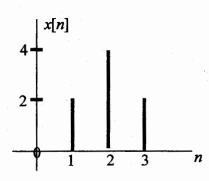
QUESTION FOUR

(a) Sketch the even and odd components of the following signals

(i)
$$x(t) = 4 \prod (4t - 8)$$

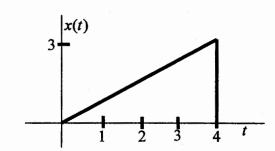
(6 marks)

(ii)



(4 marks)

(b) Given the following signal



Sketch and label the following signals

(i)
$$x(2t)$$

(2 marks)

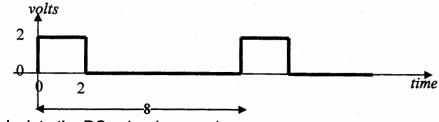
(ii)
$$x(-t/2)$$

(3 marks)

(iii)
$$x \left(\frac{3}{2}t \right)$$

(3 marks)

(c) Given the following signal



(i) Calculate the DC value (average)

(3 marks)

(ii) Calculate the RMS value

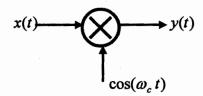
(4 marks)

QUESTION FIVE

(a) Determine the average power of the following signal

$$x(t) = 7 - 10\cos(40\pi t + \frac{\pi}{3}) + 4\sin(120\pi t)$$
 (10 marks)

- (b) (i) Distinguish between *energy* signals and *power* signals (4 marks) (ii) Are all signals either energy or power signals? Justify. (2 marks)
- (c) Find the even and odd components of $x(t) = e^{jt}$ (3 marks)
- (d) Consider the following system that performs modulation of a carrier signal $\cos(\omega_c t)$ with an input signal x(t) to produce an output, y(t)



Show if the system is

(i) linear or nonlinear (3 marks) (ii) time-invariant or not time-invariant (3 marks)